Temporal Abundance of Different Floral Visitors on Egyptian Clover (Trifolium Alexandrinum L.) and Correlation with Weather Parameters

M.K. Jat*, O.P. Chaudhary and H.D. Kaushik
Department of Entomology, College of Agriculture, CCS, Haryana Agricultural University, Hisar-125 004, Haryana, INDIA.
*Corresponding author: nitharwal84@gmail.com

Abstract

The temporal abundance of different floral visitors on Egyptian clover, Trifolium alexandrinum 1. and correlation with weather parameters was studied at Forage Section, Department of Genetics and Plant Breeding, CCS, Haryana Agricultural University, Hisar during 2012 and 2013. The mean temporal abundance of A. dorsata was the maximum $\left(4.90 / \mathrm{m}^{2} / 5 \mathrm{~min}\right.$.) followed by A. mellifera (2.69), H. armigera (2.24), Eristalinus spp. (1.59) and A. florea ($1.20 / \mathrm{m}^{2} / 5 \mathrm{~min}$.) during 2012. During 2013, A. dorsata abundance decreased to and it $3.08 / \mathrm{m}^{2} / 5 \mathrm{~min}$. followed by A. mellifera (2.61), P. brassicae (2.03), Eristalinus spp. (1.91), Coccinella septempunctata (1.63) and A. florea $\left(1.62 / \mathrm{m}^{2} / 5 \mathrm{~min}\right.$.). A. cerana abundance during 2012 was $0.30 / \mathrm{m}^{2} / 5 \mathrm{~min}$. but became almost negligible (0.06) in 2013. Floral visitor's abundance was maximum at $1400 \mathrm{~h}\left(2.97 / \mathrm{m}^{2} / 5 \mathrm{~min}\right.$.) followed by at 1200 noon (2.66) and $1600 \mathrm{~h}(2.50)$ and least during the morning hours of $0600(0.09)$ and 0800 $\mathrm{h}\left(0.42 / \mathrm{m}^{2} / 5\right.$ minutes). Abundance of A. mellifera and A. dorsata during 2012 had a highly significant positive correlation with wind speed ($\mathrm{r}=0.77$ and 0.86) at 0800 h while the later was also correlated with maximum (negative) and minimum relative humidity at $1800 \mathrm{~h}(\mathrm{r}=-0.89$ and 0.85 , respectively).

Highlights

- The hymenopterans floral visitors on T. alexandrinum were most abundant as compared to other floral visitors.
- Apis dorsata was the most abundant floral visitor ($4.90 / \mathrm{m}^{2} / 5 \mathrm{~min}$.) followed by Apis mellifera ($2.69 / \mathrm{m}^{2} / 5 \mathrm{~min}$.), Helicoverpa armigera $\left(2.24 / \mathrm{m}^{2} / 5\right)$ and Apis florea $\left(1.20 / \mathrm{m}^{2} / 5\right)$.

Keywords: Temporal abundance, diversity, floral visitors, Egyptian clover, T. alexandrinum.

Egyptian clover, Trifolium alexandrinum L. commonly called berseem (Family Leguminaceae, sub-family Papilionaceae), owing to higher quantitative yield parameters viz., green fodder yield ($85 \mathrm{t} / \mathrm{ha}$) and multicut nature ($4-6$ cuts) along with qualitative parameters
namely, succulency, high palatability, nutritive value (20% crude protein), digestibility (up to 65%) and continuous supply of over seven months (November to May) Egyptian clover is one of the most entomophilic crop requiring insects, especially bees for cross pollination.

Seed yield increase to the tune of 3496.86 per cent due to honey bee pollination has been reported by Deodikar and Suryanarayana (1977). According to Narayanan et al., (1961), hourly split up of floral visitors show that the honey bees, A. indica, A. florea and A. dorsata started foraging at 0700 h , the activity peaked between 08001100 h and bees were not seen after 1300 h as sufficient nectar of desired consistency was not available. But Batra (1976) recorded maximum intensity of A. mellifera at $1500 \mathrm{~h}\left(5.40 \mathrm{bees} / \mathrm{m}^{2} / \mathrm{min}\right.$.) than at 1200 h (4.50 bees) while for A. dorsata, it was maximum at 1200 h (1.40) and minimum at $0900 \mathrm{~h}\left(0.10\right.$ bees $/ \mathrm{m}^{2} / \mathrm{min}$.). The hourly split up of floral visitors show that the honey bees, A. indica, A. florea and A. dorsata started foraging at 0700 h , the activity peaked between $0800-1100 \mathrm{~h}$ and bees were not seen after 1300 h as sufficient nectar of desired consistency was not available.

Materials and Methods

Egyptian clover, T. alexandrinum cultivar "HB-2", the most widely adapted and important cultivar in North India was used @ 25 kg seed $/ \mathrm{ha}$ for the present investigations. The seed material was provided by Fodder Section of the Department of Genetic and Plant Breeding, CCS Haryana Agricultural University, Hisar.

Temporal abundance of floral visitors

To study the abundance of floral visitors, experimental area was randomly selected and marked at different locations to ensure the maximum flowering. Care was taken to assure similar crop dimensions with respect to the number of plants, plant spread, phase of flowering and number of flowers. The counts of floral visitors were made in one square meter bloom area for 5 minutes continuously and replicated thrice. These observations were recorded when the crop was at $30-80$ per cent of flowering at two-hourly intervals from 0600 till 1800 h (7 intervals) of the day for ten calm, clear and sunny days. Any observation on windy, cloudy or otherwise unsuitable day was rejected out-rightly. All the data were statistically analyzed by using randomized block design following the methods given by Free (1993).

Correlation of different floral visitors with weather parameters

Relevant meteorological parameters including relative humidity, atmospheric temperature (maximum and minimum), rainfall, sunshine hours and wind speed during the experiment period were also recorded from the observatory of the Department of Agro-meteorology, CCS HAU, Hisar. The weather parameters were correlated with different floral visitors of T. alexandrinum during different days and periods of observation. The data were statistically analyzed using pearson method.

Results and Discussion

Temporal abundance of flower visitors during different days and periods of observation

Abundance of various flower visitors of T. alexandrinum during different days (Table 1, 4) revealed the predominance of Apis dorsata but it was more abundant during 2012 than 2013 (4.90 and $3.08 / \mathrm{m}^{2} / 5$ minutes, respectively) followed by Apis mellifera with almost static population (2.69 and 2.61). It was further followed by A. florea having lower mean population during 2012 (1.20) than 2013 ($1.62 / \mathrm{m}^{2} / 5$ minutes). A. cerana was least abundant (0.30) and became almost negligible during $2013\left(0.01 / \mathrm{m}^{2} / 5\right.$ minutes). These studies find support from Sharma and Singh (2003) who reported that A. dorsata was most abundant at Hisar (6.55 bees/ $\mathrm{m}^{2} / 5 \mathrm{~min}$.) followed by A. mellifera (4.4 bees) and A. florea (1.52) but are in contrast to Malaviya et al., (1999) from Jhansi and Singh et al., (2012) from Punjab reporting predominance of A. mellifera. Singh et al., (2012) reported highest mean intensity of A. mellifera (3.80 bees $/ \mathrm{m}^{2} / \mathrm{min}$.) followed by A. dorsata (1.13) and A. cerana. This variation in the temporal abundance of the honey bee species is attributed to geographical location, its bee fauna composition, crop competition, etc.

At different periods of observation (hours) during 2012, (Table 2) floral visitor's abundance was maximum at $1400 \mathrm{~h}\left(2.97 / \mathrm{m}^{2} / 5\right.$ minutes) followed by at 1200 noon (2.66) and 1600 h (2.50); moderate at 1000 (1.51) and 1800 h (1.28) while the least during the morning hours of

Table 1. Abundance of floral visitors of T. alexandrinum on different days of observations during 2012

Floral visitors	Mean abundance of floral visitors on T. alexandrinum on different days of May 2012										
	03	04	05	06	07	08	09	10	11	12	Mean
Apis mellifera	$\begin{gathered} 2.62^{*} \\ (1.84)^{* *} \end{gathered}$	$\begin{gathered} 2.48 \\ (1.78) \end{gathered}$	$\begin{gathered} 2.24 \\ (1.71) \end{gathered}$	$\begin{gathered} 3.43 \\ (1.94) \end{gathered}$	$\begin{gathered} 1.52 \\ (1.53) \end{gathered}$	$\begin{gathered} 3.10 \\ (1.91) \end{gathered}$	$\begin{gathered} 3.00 \\ (1.86) \end{gathered}$	$\begin{gathered} 3.19 \\ (1.91) \end{gathered}$	$\begin{gathered} 3.19 \\ (1.91) \end{gathered}$	$\begin{gathered} 2.19 \\ (1.70) \end{gathered}$	$\begin{gathered} 2.69 \\ (1.81) \end{gathered}$
Apis dorsata	$\begin{gathered} 5.00 \\ (2.33) \end{gathered}$	$\begin{gathered} 4.48 \\ (2.21) \end{gathered}$	$\begin{gathered} 4.62 \\ (2.22) \\ \hline \end{gathered}$	$\begin{gathered} 5.38 \\ (2.36) \end{gathered}$	$\begin{gathered} 2.48 \\ (1.81) \end{gathered}$	$\begin{gathered} 5.67 \\ (1.43) \end{gathered}$	$\begin{gathered} 5.76 \\ (2.44) \end{gathered}$	$\begin{gathered} 6.14 \\ (2.53) \\ \hline \end{gathered}$	$\begin{gathered} 6.14 \\ (2.53) \\ \hline \end{gathered}$	$\begin{gathered} 3.33 \\ (2.00) \end{gathered}$	$\begin{aligned} & 4.90 \\ & (2.29) \end{aligned}$
Apis florea	$\begin{gathered} 1.95 \\ (1.64) \end{gathered}$	$\begin{gathered} 1.67 \\ (1.56) \end{gathered}$	$\begin{gathered} 1.33 \\ (1.46) \end{gathered}$	$\begin{gathered} 1.05 \\ (1.38) \end{gathered}$	$\begin{gathered} 1.05 \\ (1.40) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.42) \end{gathered}$	$\begin{gathered} 1.05 \\ (1.38) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.36) \end{gathered}$	$\begin{gathered} 0.62 \\ (1.24) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.43) \end{gathered}$	$\begin{gathered} 1.20 \\ (1.43) \end{gathered}$
Apis cerana	$\begin{gathered} 0.38 \\ (1.15) \\ \hline \end{gathered}$	$\begin{gathered} 0.24 \\ (110) \end{gathered}$	$\begin{gathered} 0.33 \\ (1.14) \end{gathered}$	$\begin{gathered} 0.48 \\ (1.20) \end{gathered}$	$\begin{gathered} 0.24 \\ (1.10) \end{gathered}$	$\begin{gathered} 0.33 \\ (1.14) \end{gathered}$	$\begin{gathered} 0.29 \\ (1.11) \end{gathered}$	$\begin{gathered} 0.29 \\ (1.12) \end{gathered}$	$\begin{gathered} 0.19 \\ (1.08) \end{gathered}$	$\begin{gathered} 0.24 \\ (1.10) \end{gathered}$	$\begin{gathered} 0.30 \\ (1.12) \end{gathered}$
Polistes olivaceus	$\begin{gathered} 1.19 \\ (1.46) \end{gathered}$	$\begin{gathered} 0.95 \\ (1.37) \end{gathered}$	$\begin{gathered} 1.33 \\ (1.49) \end{gathered}$	$\begin{gathered} 0.91 \\ (1.34) \end{gathered}$	$\begin{gathered} 0.81 \\ (1.32) \end{gathered}$	$\begin{gathered} 1.19 \\ (1.45) \end{gathered}$	$\begin{gathered} 1.05 \\ (1.40) \end{gathered}$	$\begin{gathered} 0.95 \\ (1.37) \end{gathered}$	$\begin{gathered} 0.71 \\ (1.29) \end{gathered}$	$\begin{gathered} 0.86 \\ (1.33) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.38) \end{gathered}$
Megachile spp.	$\begin{gathered} 1.05 \\ (1.40) \\ \hline \end{gathered}$	$\begin{gathered} 0.86 \\ (1.34) \end{gathered}$	$\begin{gathered} 0.86 \\ (1.34) \end{gathered}$	$\begin{gathered} 0.86 \\ (1.33) \end{gathered}$	$\begin{gathered} 0.43 \\ (1.18) \\ \hline \end{gathered}$	$\begin{gathered} 0.95 \\ (1.38) \end{gathered}$	$\begin{gathered} 0.86 \\ (1.33) \end{gathered}$	$\begin{gathered} 0.52 \\ (1.21) \end{gathered}$	$\begin{gathered} 0.57 \\ (1.24) \end{gathered}$	$\begin{gathered} 0.52 \\ (1.21) \end{gathered}$	$\begin{gathered} 0.75 \\ (1.39) \end{gathered}$
Campsomeriella collaris collaris	$\begin{gathered} 0.71 \\ (1.29) \end{gathered}$	$\begin{gathered} 0.38 \\ (1.16) \end{gathered}$	$\begin{gathered} 0.76 \\ (1.31) \end{gathered}$	$\begin{gathered} 0.62 \\ (1.24) \end{gathered}$	$\begin{gathered} 0.57 \\ (1.23) \end{gathered}$	$\begin{gathered} 0.43 \\ (1.18) \end{gathered}$	$\begin{gathered} 0.52 \\ (1.21) \end{gathered}$	$\begin{gathered} 0.29 \\ (1.12) \end{gathered}$	$\begin{gathered} 0.33 \\ (1.14) \end{gathered}$	$\begin{gathered} 0.19 \\ (1.08) \end{gathered}$	$\begin{gathered} 0.48 \\ (1.19) \end{gathered}$
Eristalinus spp.	$\begin{gathered} 1.48 \\ (1.55) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.43) \end{gathered}$	$\begin{gathered} 1.43 \\ (1.53) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.53) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.45) \end{gathered}$	$\begin{gathered} 2.05 \\ (1.71) \end{gathered}$	$\begin{gathered} 2.05 \\ (1.71) \end{gathered}$	$\begin{gathered} 1.86 \\ (1.64) \end{gathered}$	$\begin{gathered} 1.81 \\ (1.62) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.52) \end{gathered}$	$\begin{gathered} 1.59 \\ (1.57) \end{gathered}$
Pieris brassicae	$\begin{gathered} 1.10 \\ (1.43) \end{gathered}$	$\begin{gathered} 0.95 \\ (1.36) \\ \hline \end{gathered}$	$\begin{gathered} 1.10 \\ (1.42) \end{gathered}$	$\begin{gathered} 1.43 \\ (1.51) \\ \hline \end{gathered}$	$\begin{gathered} 0.95 \\ (1.37) \\ \hline \end{gathered}$	$\begin{gathered} 1.67 \\ (1.59) \end{gathered}$	$\begin{gathered} 1.71 \\ (1.60) \end{gathered}$	$\begin{gathered} 1.81 \\ (1.64) \\ \hline \end{gathered}$	$\begin{gathered} 1.48 \\ (1.53) \\ \hline \end{gathered}$	$\begin{gathered} 1.62 \\ (1.55) \end{gathered}$	$\begin{gathered} 1.38 \\ (1.50) \end{gathered}$
Helicoverpa armigera	$\begin{gathered} 1.95 \\ (1.66) \\ \hline \end{gathered}$	$\begin{gathered} 2.05 \\ (1.68) \end{gathered}$	$\begin{gathered} 1.76 \\ (1.59) \\ \hline \end{gathered}$	$\begin{gathered} 1.86 \\ (1.62) \\ \hline \end{gathered}$	$\begin{gathered} 2.24 \\ (1.73) \\ \hline \end{gathered}$	$\begin{gathered} 2.48 \\ (1.80) \\ \hline \end{gathered}$	$\begin{gathered} 2.38 \\ (1.77) \\ \hline \end{gathered}$	$\begin{gathered} 2.38 \\ (1.78) \\ \hline \end{gathered}$	$\begin{gathered} 2.33 \\ (1.77) \end{gathered}$	$\begin{gathered} 3.00 \\ (1.90) \end{gathered}$	$\begin{gathered} 2.24 \\ (1.73) \end{gathered}$
Andrallus spinidens	$\begin{gathered} 1.33 \\ (1.50) \end{gathered}$	$\begin{gathered} 0.86 \\ (1.34) \end{gathered}$	$\begin{gathered} 1.24 \\ (1.44) \end{gathered}$	$\begin{gathered} 1.19 \\ (1.45) \end{gathered}$	$\begin{gathered} 0.95 \\ (1.37) \end{gathered}$	$\begin{gathered} 1.81 \\ (1.65) \end{gathered}$	$\begin{gathered} 2.14 \\ (1.72) \end{gathered}$	$\begin{gathered} 2.14 \\ (1.73) \end{gathered}$	$\begin{gathered} 1.57 \\ (1.57) \end{gathered}$	$\begin{gathered} 1.95 \\ (1.66) \end{gathered}$	$\begin{gathered} 1.52 \\ (1.54) \end{gathered}$
Coccinella septempunctata	$\begin{gathered} 1.33 \\ (1.51) \end{gathered}$	$\begin{gathered} 1.05 \\ (1.40) \end{gathered}$	$\begin{gathered} 1.38 \\ (1.52) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.55) \end{gathered}$	$\begin{gathered} 1.24 \\ (1.46) \end{gathered}$	$\begin{gathered} 1.62 \\ (1.58) \end{gathered}$	$\begin{gathered} 1.95 \\ (1.67) \end{gathered}$	$\begin{gathered} 1.95 \\ (1.68) \end{gathered}$	$\begin{gathered} 1.81 \\ (1.63) \end{gathered}$	$\begin{gathered} 1.76 \\ (1.62) \end{gathered}$	$\begin{gathered} 1.56 \\ (1.56) \end{gathered}$
CD ($\mathrm{p} \leq 0.05$)						0.11					0.04
SE(m)						0.03					0.01
Mean	$\begin{gathered} 1.68 \\ (1.56) \end{gathered}$	$\begin{gathered} 1.43 \\ (1.48) \end{gathered}$	$\begin{gathered} 1.53 \\ (1.51) \end{gathered}$	$\begin{gathered} 1.68 \\ (1.54) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.41) \end{gathered}$	$\begin{gathered} 1.87 \\ (1.60) \end{gathered}$	$\begin{gathered} 1.90 \\ (1.60) \end{gathered}$	$\begin{gathered} 1.88 \\ (1.59) \end{gathered}$	$\begin{gathered} 1.73 \\ (1.55) \end{gathered}$	$\begin{gathered} 1.52 \\ (1.51) \end{gathered}$	
CD (p ≤ 0.05)						0.03					
SE(m)						0.01					

Observations are mean of 30 replications (10 days $\times 3$ replications). $ *$ Figures in parentheses are $\sqrt{ } \mathrm{n}+1$ values

Jat et al.

Table 2. Abundance of floral visitors of T. alexandrinum during different hours of day during 2012

Floral visitors	Spatial distribution of floral visitors during different hours (h)							
	0600	0800	1000	1200	1400	1600	1800	Mean
Apis mellifera	$\begin{aligned} & \text { 0.00* } \\ & (1.00)^{* *} \end{aligned}$	$\begin{aligned} & 0.57 \\ & (1.24) \end{aligned}$	$\begin{aligned} & 2.33 \\ & (1.81) \end{aligned}$	$\begin{aligned} & 4.73 \\ & (2.37) \end{aligned}$	$\begin{array}{\|l} \hline 5.70 \\ (2.57) \end{array}$	$\begin{aligned} & 4.53 \\ & (2.22) \end{aligned}$	$\begin{aligned} & 0.97 \\ & (1.35) \end{aligned}$	$\begin{aligned} & \hline 2.69 \\ & (1.81) \end{aligned}$
Apis dorsata	$\begin{aligned} & 0.50 \\ & (1.21) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (1.57) \end{aligned}$	$\begin{aligned} & \hline 4.13 \\ & (2.24) \end{aligned}$	$\begin{aligned} & \hline 8.93 \\ & (3.11) \end{aligned}$	$\begin{aligned} & 9.57 \\ & (3.22) \end{aligned}$	$\begin{aligned} & \hline 7.37 \\ & (2.87) \end{aligned}$	$\begin{aligned} & 2.30 \\ & (1.78) \end{aligned}$	$\begin{aligned} & 4.90 \\ & (2.29) \end{aligned}$
Apis florea	$\begin{aligned} & 0.03 \\ & (1.01) \end{aligned}$	$\begin{aligned} & 0.40 \\ & (1.17) \end{aligned}$	$\begin{aligned} & 1.47 \\ & (1.54) \end{aligned}$	$\begin{aligned} & \hline 2.43 \\ & (1.83) \end{aligned}$	$\begin{aligned} & 2.37 \\ & (1.79) \end{aligned}$	$\begin{aligned} & 1.33 \\ & (1.50) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (1.15) \end{aligned}$	$\begin{aligned} & 1.20 \\ & (1.43) \end{aligned}$
Apis cerana	$\begin{aligned} & 0.00 \\ & (1.00) \end{aligned}$	$\begin{aligned} & 0.00 \\ & (1.00) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (1.15) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (1.30) \end{aligned}$	$\begin{aligned} & 0.60 \\ & (1.24) \end{aligned}$	$\begin{array}{\|l} 0.37 \\ (1.15) \end{array}$	$\begin{aligned} & 0.03 \\ & (1.01) \end{aligned}$	$\begin{aligned} & 0.30 \\ & (1.12) \end{aligned}$
Polistes olivaceus	$\begin{array}{\|l} \hline 0.10 \\ (1.04) \end{array}$	$\begin{array}{\|l} 0.17 \\ (1.07) \end{array}$	$\begin{aligned} & 0.80 \\ & (1.33) \end{aligned}$	$\begin{array}{\|l} \hline 1.43 \\ (1.55) \end{array}$	$\begin{aligned} & 1.83 \\ & (1.67) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (1.59) \end{aligned}$	$\begin{aligned} & 1.07 \\ & (1.41) \end{aligned}$	$\begin{aligned} & 1.00 \\ & (1.38) \end{aligned}$
Megachile spp.	$\begin{aligned} & 0.00 \\ & (1.00) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (1.06) \end{aligned}$	$\begin{aligned} & 0.60 \\ & (1.25) \end{aligned}$	$\begin{aligned} & \hline 1.20 \\ & (1.47) \end{aligned}$	$\begin{aligned} & 1.53 \\ & (1.58) \end{aligned}$	$\begin{aligned} & \hline 1.13 \\ & (1.45) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0.63 \\ (1.26) \\ \hline \end{array}$	$\begin{aligned} & \hline 0.75 \\ & (1.29) \\ & \hline \end{aligned}$
Campsomeriella collaris collaris	$\begin{aligned} & 0.00 \\ & (1.00) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (1.01) \end{aligned}$	$\begin{aligned} & 0.60 \\ & (1.25) \end{aligned}$	$\begin{aligned} & 0.90 \\ & (1.37) \end{aligned}$	$\begin{aligned} & 0.83 \\ & (1.33) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (1.25) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (1.15) \end{aligned}$	$\begin{aligned} & \hline 0.48 \\ & (1.19) \end{aligned}$
Eristalinus spp.	$\begin{aligned} & 0.13 \\ & (1.06) \end{aligned}$	$\begin{aligned} & 0.60 \\ & (1.25) \end{aligned}$	$\begin{array}{\|l\|l} \hline 1.53 \\ (1.58) \end{array}$	$\begin{aligned} & 2.53 \\ & (1.87) \end{aligned}$	$\begin{aligned} & 2.73 \\ & (1.92) \end{aligned}$	$\begin{aligned} & 2.23 \\ & (1.79) \end{aligned}$	$\begin{aligned} & 1.37 \\ & (1.52) \end{aligned}$	$\begin{aligned} & 1.59 \\ & (1.57) \end{aligned}$
Pieris brassicae	$\begin{aligned} & 0.03 \\ & (1.01) \end{aligned}$	$\begin{aligned} & 0.20 \\ & (1.08) \end{aligned}$	$\begin{aligned} & 1.17 \\ & (1.45) \end{aligned}$	$\begin{aligned} & 1.93 \\ & (1.70) \end{aligned}$	$\begin{aligned} & 2.40 \\ & (1.83) \end{aligned}$	$\begin{aligned} & 2.23 \\ & (1.78) \end{aligned}$	$\begin{aligned} & 1.70 \\ & (1.63) \end{aligned}$	$\begin{aligned} & 1.38 \\ & (1.50) \end{aligned}$
Helicoverpa armigera	$\begin{aligned} & 0.07 \\ & (1.03) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (1.15) \end{aligned}$	$\begin{aligned} & \hline 1.97 \\ & (1.70) \end{aligned}$	$\begin{aligned} & \hline 2.70 \\ & (1.91) \end{aligned}$	$\begin{aligned} & \hline 3.17 \\ & (2.01) \end{aligned}$	$\begin{aligned} & \hline 4.03 \\ & (2.23) \end{aligned}$	$\begin{aligned} & \hline 3.40 \\ & (2.09) \end{aligned}$	$\begin{aligned} & \hline 2.24 \\ & (1.73) \end{aligned}$
Andrallus spinidens	$\begin{aligned} & 0.03 \\ & (1.01) \end{aligned}$	$\begin{aligned} & 0.57 \\ & (1.23) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (1.57) \end{aligned}$	$\begin{aligned} & \hline 2.23 \\ & (1.79) \end{aligned}$	$\begin{aligned} & 2.43 \\ & (1.84) \end{aligned}$	$\begin{aligned} & 2.17 \\ & (1.76) \end{aligned}$	$\begin{aligned} & 1.63 \\ & (1.60) \end{aligned}$	$\begin{aligned} & 1.52 \\ & (1.54) \end{aligned}$
Coccinella septempunctata	$\begin{array}{\|l} 0.17 \\ (1.07) \end{array}$	$\begin{aligned} & 0.47 \\ & (1.19) \end{aligned}$	$\begin{aligned} & 1.60 \\ & (1.60) \end{aligned}$	$\begin{aligned} & 2.17 \\ & (1.77) \end{aligned}$	$\begin{array}{\|l} 2.50 \\ (1.86) \end{array}$	$\begin{aligned} & 2.43 \\ & (1.84) \end{aligned}$	$\begin{aligned} & 1.57 \\ & (1.58) \end{aligned}$	$\begin{aligned} & 1.56 \\ & (1.56) \end{aligned}$
CD (p $\leq 0.05)$				(0.10)				(0.04)
SE(m)				0.03				0.01
Mean	$\begin{aligned} & 0.09 \\ & (1.04) \end{aligned}$	$\begin{array}{\|l} 0.42 \\ (1.17) \end{array}$	$\begin{array}{\|l\|} \hline 1.51 \\ (1.54) \end{array}$	$\begin{aligned} & \hline 2.66 \\ & (1.84) \end{aligned}$	$\begin{array}{\|l} \hline 2.97 \\ (1.91) \end{array}$	$\begin{aligned} & \hline 2.50 \\ & (1.79) \end{aligned}$	$\begin{array}{\|l} \hline 1.28 \\ (1.46) \end{array}$	
CD ($\mathrm{p} \leq 0.05$)				(0.03)				
SE(m)				0.01				

*Observations are mean of 21 replications (7 intervals x 3 replications). ** Figures in parentheses are $\sqrt{ } \mathrm{n}+1$ values
Table 3. Correlation of different floral visitors with weather parameters during 2012

Floral visitors	0600 h					0800 h					1000 h				
	TMax	TMin	RHMax	RHMin	WS	TMax	TMin	RHMax	RHMin	WS	TMax	TMin	RHMax	RHMin	WS
Apis mellifera	-	-	-	-		0.03	0.05	0.31	0.09	0.77**	0.01	0.41	-0.29	-0.30	-0.41
Apis dorsata	-0.29	-0.34	0.50	0.43	-0.62	0.29	0.16	0.18	-0.01	0.86**	-0.15	-0.08	-0.56	-0.46	-0.54
Apis florea	0.12	0.10	-0.08	-0.33	-0.20	-0.27	-0.32	0.71*	0.82**	-0.03	0.26	0.31	-0.56	-0.41	-0.02
Apis cerana	-	-	-	-	-	-	-	-	-	-	0.12	0.31	-0.45	-0.47	-0.23
Polistes olivaceus	-0.17	-0.18	0.32	0.22	-0.39	-0.08	-0.12	0.63*	0.54	0.46	-0.32	-0.12	-0.02	0.09	-0.23
Megachile spp.	-	-	-	-	-	0.31	0.32	-0.03	0.09	0.56	0.19	-0.04	-0.13	-0.27	-0.31
Campsomeriella collaris collaris	-	-	-	-	-	0.46	0.42	-0.01	0.13	0.455	0.56	0.41	-0.02	0.13	-0.34
Eristalinus spp.	0.39	0.29	0.10	0.07	0.07	0.14	0.33	-0.01	-0.01	0.67*	-0.18	-0.14	-0.32	-0.23	-0.47
Pieris brassicae	-0.10	-0.03	-0.39	-0.26	0.07	0.29	0.21	0.20	0.15	0.76*	-0.47	-0.31	-0.08	0.12	-0.48
Helicoverpa armigera	-0.42	-0.47	-0.06	0.24	0.49	0.05	0.03	0.17	0.14	0.52	-0.41	0.15	-0.07	-0.21	-0.46
Andrallus spinidens	0.43	0.41	0.04	0.02	0.14	0.11	0.16	0.12	0.08	0.67*	-0.46	-0.17	0.25	0.26	0.03
Coccinella septempunctata	0.08	0.08	0.24	-0.01	-0.61	-0.34	-0.26	-0.15	-0.25	0.42	-0.20	-0.02	-0.14	-0.01	-0.46

1200 h					1400 h					1600 h					1800 h				
TMax	TMin	RHMax	RHMin	WS	TMax	TMin	$\begin{gathered} \text { RH } \\ \text { Max } \end{gathered}$	RHMin	WS	TMax	TMin	$\begin{aligned} & \text { RH } \\ & \text { Max } \end{aligned}$	RHMin	wS	TMax	TMin	$\begin{gathered} \text { RH } \\ \text { Max } \end{gathered}$	RHMin	WS
0.40	0.18	-0.18	-0.31	0.46	0.04	0.04	-0.41	-0.39	0.10	0.29	0.25	0.20	-0.42	-0.04	-0.58	-0.55	0.44	0.46	0.09
0.51	0.25	-0.47	-0.58	0.46	0.06	0.11	-0.47	-0.50	-0.10	0.53	0.49	-0.13	-0.67*	-0.23	$-0.83 * *$	-0.83**	0.89**	0.85**	0.44
0.18	-0.21	-0.71*	-0.79**	0.39	-0.12	-0.05	-0.52	-0.52	-0.21	0.12	0.00	-0.16	-0.35	0.10	-0.06	0.03	0.12	0.20	-0.50
0.31	0.49	0.12	0.03	0.47	-0.31	-0.27	-0.38	-0.33	0.15	0.39	0.28	-0.06	-0.45	0.08	-0.14	-0.24	0.30	0.18	0.84**
0.55	0.61	-0.09	-0.18	0.37	0.36	0.40	-0.48	-0.59	-0.38	0.22	-0.09	-0.29	-0.17	0.44	-0.04	-0.20	0.00	-0.02	0.55
0.26	0.33	-0.26	-0.37	0.32	-0.13	-0.07	-0.57	-0.61	-0.35	0.27	0.06	-0.09	-0.25	-0.07	0.54	0.62	-0.62	-0.60	-0.52
0.53	0.31	-0.05	0.01	0.05	0.12	0.11	-0.28	-0.44	-0.55	0.42	0.38	-0.37	-0.50	-0.27	0.25	0.24	-0.42	-0.41	-0.09
-0.19	0.37	0.25	0.14	0.41	-0.11	-0.07	0.25	0.25	0.27	-0.08	-0.29	0.34	0.35	0.52	-0.37	-0.37	0.48	0.50	0.05
0.04	0.26	0.17	0.04	0.47	-0.15	-0.08	0.08	0.19	0.55	-0.43	-0.65*	0.66*	0.61	0.71*	-0.15	-0.21	0.31	0.26	0.43
-0.31	0.30	0.08	-0.01	0.45	-0.12	-0.13	0.53	0.60	0.39	-0.14	-0.5	0.18	0.31	0.48	-0.4	-0.3	0.33	0.41	-0.23
0.03	0.56	0.00	-0.02	0.65*	-0.25	-0.19	0.12	0.25	0.574	-0.27	-0.46	0.15	0.42	0.59	-0.32	-0.32	-0.38	0.40	0.35
-0.57	0.38	0.70*	0.65*	0.33	-0.33	-0.35	0.48	0.52	0.40	-0.48	-0.64*	0.56	0.77**	0.59	-0.52	-0.56	0.62	0.57	0.50
* Significant at 5 per cent level ** Significant at 1 per cent level																			

Table 4. Abundance of floral visitors of T. alexandrinum on different days of observations during 2013

Floral visitors	Mean abundance of floral visitors on different days of May 2013										
	01	02	03	04	05	06	07	08	09	10	Mean
Apis mellifera	$\begin{gathered} 2.62^{*} \\ (1.82)^{* *} \end{gathered}$	$\begin{gathered} 2.19 \\ (1.72) \end{gathered}$	$\begin{gathered} 2.38 \\ (1.77) \end{gathered}$	$\begin{gathered} 2.52 \\ (1.80) \end{gathered}$	$\begin{gathered} 2.81 \\ (1.89) \end{gathered}$	$\begin{gathered} 2.62 \\ (1.83) \end{gathered}$	$\begin{gathered} 2.76 \\ (1.87) \end{gathered}$	$\begin{gathered} 2.86 \\ (1.89) \end{gathered}$	$\begin{gathered} 2.52 \\ (1.80) \end{gathered}$	$\begin{gathered} 2.76 \\ (1.87) \end{gathered}$	$\begin{gathered} 2.61 \\ (1.83) \end{gathered}$
Apis dorsata	$\begin{gathered} 2.38 \\ (1.76) \end{gathered}$	$\begin{gathered} 2.57 \\ (1.81) \end{gathered}$	$\begin{gathered} 2.86 \\ (1.89) \end{gathered}$	$\begin{gathered} 2.95 \\ (1.91) \end{gathered}$	$\begin{gathered} 3.24 \\ (1.98) \end{gathered}$	$\begin{gathered} 3.43 \\ (2.03) \end{gathered}$	$\begin{gathered} 3.38 \\ (2.03) \end{gathered}$	$\begin{gathered} 3.33 \\ (2.01) \end{gathered}$	$\begin{gathered} 3.24 \\ (1.98) \end{gathered}$	$\begin{gathered} 3.43 \\ (2.03) \end{gathered}$	$\begin{gathered} 3.08 \\ (1.94) \end{gathered}$
Apis florea	$\begin{gathered} 1.33 \\ (1.48) \end{gathered}$	$\begin{gathered} 1.43 \\ (1.52) \end{gathered}$	$\begin{gathered} 2.05 \\ (1.69) \end{gathered}$	$\begin{gathered} 1.71 \\ (1.58) \end{gathered}$	$\begin{gathered} 1.67 \\ (1.59) \end{gathered}$	$\begin{gathered} 1.86 \\ (1.64) \end{gathered}$	$\begin{gathered} 1.71 \\ (1.60) \end{gathered}$	$\begin{gathered} 1.57 \\ (1.54) \end{gathered}$	$\begin{gathered} 1.29 \\ (1.46) \end{gathered}$	$\begin{gathered} 1.62 \\ (1.56) \end{gathered}$	$\begin{gathered} 1.62 \\ (1.57) \end{gathered}$
Apis cerana	$\begin{gathered} 0.00 \\ (1.00) \end{gathered}$	$\begin{gathered} 0.05 \\ (1.02) \end{gathered}$	$\begin{gathered} 0.05 \\ (1.02) \end{gathered}$	$\begin{gathered} 0.05 \\ (1.02) \end{gathered}$	$\begin{gathered} 0.01 \\ (1.01) \end{gathered}$						
Polistes olivaceus	$\begin{gathered} 0.71 \\ (129) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.43) \end{gathered}$	$\begin{gathered} 1.19 \\ (1.45) \end{gathered}$	$\begin{gathered} 1.24 \\ (1.47) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.55) \end{gathered}$	$\begin{gathered} 1.43 \\ (1.52) \end{gathered}$	$\begin{gathered} 1.43 \\ (1.53) \end{gathered}$	$\begin{gathered} 1.29 \\ (1.48) \end{gathered}$	$\begin{gathered} 1.24 \\ (1.47) \end{gathered}$	$\begin{gathered} 1.76 \\ (1.63) \end{gathered}$	$\begin{gathered} 1.29 \\ (1.48) \end{gathered}$
Megachile spp.	$\begin{gathered} 0.52 \\ (1.22) \end{gathered}$	$\begin{gathered} 0.62 \\ (1.25) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.38) \end{gathered}$	$\begin{gathered} 0.67 \\ (1.27) \end{gathered}$	$\begin{gathered} 0.67 \\ (1.26) \end{gathered}$	$\begin{gathered} 0.62 \\ (1.24) \end{gathered}$	$\begin{gathered} 0.71 \\ (1.29) \end{gathered}$	$\begin{gathered} 0.76 \\ (1.29) \end{gathered}$	$\begin{gathered} 0.86 \\ (1.32) \end{gathered}$	$\begin{gathered} 0.86 \\ (1.33) \end{gathered}$	$\begin{gathered} 0.73 \\ (1.29) \end{gathered}$
Campsomeriella collaris collaris	$\begin{gathered} 0.29 \\ (1.11) \end{gathered}$	$\begin{gathered} 0.29 \\ (1.12) \end{gathered}$	$\begin{gathered} 0.24 \\ (1.10) \end{gathered}$	$\begin{gathered} 0.19 \\ (1.08) \end{gathered}$	$\begin{gathered} 0.38 \\ (1.16) \end{gathered}$	$\begin{gathered} 0.24 \\ (1.10) \end{gathered}$	$\begin{gathered} 0.24 \\ (1.10) \end{gathered}$	$\begin{gathered} 0.33 \\ (1.14) \end{gathered}$	$\begin{gathered} 0.29 \\ (1.12) \end{gathered}$	$\begin{gathered} 0.19 \\ (1.08) \end{gathered}$	$\begin{gathered} 0.27 \\ (1.11) \end{gathered}$
Eristalinus spp.	$\begin{gathered} 1.33 \\ (1.50) \end{gathered}$	$\begin{gathered} 1.24 \\ (1.46) \end{gathered}$	$\begin{gathered} 1.71 \\ (1.60) \end{gathered}$	$\begin{gathered} 2.29 \\ (1.78) \end{gathered}$	$\begin{gathered} 2.05 \\ (1.72) \end{gathered}$	$\begin{gathered} 2.19 \\ (1.77) \end{gathered}$	$\begin{gathered} 2.00 \\ (1.71) \end{gathered}$	$\begin{gathered} 1.95 \\ (1.69) \end{gathered}$	$\begin{gathered} 2.10 \\ (1.74) \end{gathered}$	$\begin{gathered} 2.24 \\ (1.79) \end{gathered}$	$\begin{gathered} 1.91 \\ (1.68) \end{gathered}$
Pieris brassicae	$\begin{gathered} 1.14 \\ (1.44) \end{gathered}$	$\begin{gathered} 1.81 \\ (1.62) \end{gathered}$	$\begin{gathered} 1.95 \\ (1.69) \end{gathered}$	$\begin{gathered} 2.05 \\ (1.71) \end{gathered}$	$\begin{gathered} 2.14 \\ (1.73) \end{gathered}$	$\begin{gathered} 2.33 \\ (1.77) \end{gathered}$	$\begin{gathered} 2.29 \\ (1.76) \end{gathered}$	$\begin{gathered} 2.29 \\ (1.75) \end{gathered}$	$\begin{gathered} 2.33 \\ (1.77) \end{gathered}$	$\begin{gathered} 2.00 \\ (1.67) \end{gathered}$	$\begin{gathered} 2.03 \\ (1.69) \end{gathered}$
Helicoverpa armigera	$\begin{gathered} 0.86 \\ (1.34) \end{gathered}$	$\begin{gathered} 1.29 \\ (1.47) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.55) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.53) \end{gathered}$	$\begin{gathered} 1.33 \\ (1.49) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.53) \end{gathered}$	$\begin{gathered} 1.76 \\ (1.61) \end{gathered}$	$\begin{gathered} 1.14 \\ (1.43) \end{gathered}$	$\begin{gathered} 1.33 \\ (1.48) \end{gathered}$	$\begin{gathered} 1.57 \\ (1.56) \end{gathered}$	$\begin{gathered} 1.37 \\ (1.50) \end{gathered}$
Andrallus spinidens	$\begin{gathered} 1.00 \\ (1.39) \end{gathered}$	$\begin{gathered} 1.05 \\ (1.40) \end{gathered}$	$\begin{gathered} 0.91 \\ (1.35) \end{gathered}$	$\begin{gathered} 1.52 \\ (1.55) \end{gathered}$	$\begin{gathered} 1.62 \\ (1.59) \end{gathered}$	$\begin{gathered} 1.76 \\ (1.63) \end{gathered}$	$\begin{gathered} 1.38 \\ (1.51) \end{gathered}$	$\begin{gathered} 1.48 \\ (1.54) \end{gathered}$	$\begin{gathered} 1.38 \\ (1.51) \end{gathered}$	$\begin{gathered} 1.76 \\ (1.62) \end{gathered}$	$\begin{gathered} 1.39 \\ (1.51) \end{gathered}$
Coccinella septempunctata	$\begin{gathered} 0.95 \\ (1.37) \end{gathered}$	$\begin{gathered} 1.33 \\ (1.50) \end{gathered}$	$\begin{gathered} 1.57 \\ (1.56) \end{gathered}$	$\begin{gathered} 1.67 \\ (1.60) \end{gathered}$	$\begin{gathered} 1.52 \\ (1.57) \end{gathered}$	$\begin{gathered} 1.81 \\ (1.64) \end{gathered}$	$\begin{gathered} 1.86 \\ (1.66) \end{gathered}$	$\begin{gathered} 2.00 \\ (1.70) \end{gathered}$	$\begin{gathered} 1.71 \\ (1.62) \end{gathered}$	$\begin{gathered} 1.86 \\ (1.66) \end{gathered}$	$\begin{gathered} 1.63 \\ (1.59) \end{gathered}$
CD ($\mathrm{p} \leq 0.05$)						0.12					0.03
SE(m)						0.04					0.01
Mean	$\begin{gathered} 1.10 \\ (1.39) \end{gathered}$	$\begin{gathered} 1.25 \\ (1.44) \end{gathered}$	$\begin{gathered} 1.44 \\ (1.50) \end{gathered}$	$\begin{gathered} 1.52 \\ (1.52) \end{gathered}$	$\begin{gathered} 1.58 \\ (1.54) \end{gathered}$	$\begin{gathered} 1.65 \\ (1.56) \end{gathered}$	$\begin{gathered} 1.63 \\ (1.56) \end{gathered}$	$\begin{gathered} 1.59 \\ (1.54) \end{gathered}$	$\begin{gathered} 1.53 \\ (1.52) \end{gathered}$	$\begin{gathered} 1.68 \\ (1.57) \end{gathered}$	
CD ($\mathrm{p} \leq 0.05$)						0.03					
SE(m)						0.01					

*Observations are mean of 30 replications (10 days $\times 3$ replications). ** Figures in parentheses are $\sqrt{ } n+1$ value
Table 5. Abundance of floral visitors of T. alexandrinum during different hours of day during 2013

[^0]Table 6. Correlation of different floral visitors with weather parameters during 2013

Floral visitors	0600 h					0800 h					1000 h				
	TMax	TMin	RHMax	RHMin	WS	TMax	TMin	RHMax	RHMin	WS	TMax	TMin	RHMax	RHMin	WS
Apis mellifera	-	-	-	-	-	0.45	0.64*	0.36	0.74*	-0.42	-0.45	-0.39	0.18	0.14	0.05
Apis dorsata	-	-	-	-	-	0.53	0.59	0.80**	0.69*	0.14	0.12	0.24	0.00	0.06	0.13
Apis florea	-	-	-	-	-	0.04	0.38	0.49	0.52	-0.21	-0.39	-0.41	-0.17	-0.21	0.08
Apis cerana	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Polistes olivaceus	0.68*	0.38	0.11	0.22	0.00	-0.06	-0.32	-0.16	0.11	-0.33	0.16	0.31	0.37	0.38	0.46
Megachile spp.	-	-	-	-	-	0.24	0.15	0.40	0.49	-0.19	0.11	-0.41	-0.14	-0.11	0.34
Campsomeriella collaris collaris	-	-	-	-	-	-	-	-	-	-	0.49	0.06	0.50	0.41	0.18
Eristalinus spp.	0.31	0.44	0.05	-0.10	0.35	0.38	0.46	0.06	0.66*	-0.31	0.09	-0.09	0.35	0.36	-0.39
Pieris brassicae	-	-	-	-	-	-0.15	-0.15	-0.01	-0.18	0.29	0.13	-0.07	0.12	0.14	-0.31
Helicoverpa armigera	-	-	-	-	-	0.01	-0.41	-0.25	-0.34	0.51	-0.34	-0.38	0.18	0.20	-0.02
Andrallus spinidens	0.38	0.14	0.40	0.39	0.03	-0.00	0.40	0.72*	0.62	0.05	0.50	0.63	0.51	0.59	0.24
Coccinella septempunctata	0.19	0.13	0.65*	0.55	0.20	0.55	0.61	0.73*	0.70*	-0.03	-0.10	-0.08	0.10	0.04	-0.28

1200 h					1400 h					1600 h					1800 h				
TMax	TMin	$\begin{gathered} \text { RH } \\ \text { Max } \end{gathered}$	$\begin{aligned} & \text { RH } \\ & \text { Min } \end{aligned}$	WS	TMax	TMin	$\begin{gathered} \text { RH } \\ \text { Max } \end{gathered}$	$\begin{aligned} & \text { RH } \\ & \text { Min } \end{aligned}$	WS	TMax	TMin	RHMax	RHMin	WS	TMax	TMin	$\begin{aligned} & \text { RH } \\ & \text { Max } \end{aligned}$	$\begin{aligned} & \text { RH } \\ & \text { Min } \end{aligned}$	WS
0.41	0.39	0.21	0.34	0.21	0.34	0.36	-0.21	-0.28	0.08	0.25	0.48	0.52	0.40	-0.03	0.61	0.77**	0.47	0.44	-0.21
0.67*	0.85**	0.50	0.39	-0.22	0.55	0.42	0.55	0.51	0.66*	0.03	0.31	0.18	0.20	0.17	0.79**	0.68*	0.53	0.60	0.11
0.13	0.46	0.48	0.37	-0.15	0.12	0.03	-0.40	-0.36	0.28	-0.03	0.05	-0.33	-0.25	-0.01	0.21	0.34	-0.28	-0.16	-0.22
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-0.12	0.57	0.27	0.33	0.33	0.62	0.40	0.51	0.43	0.45	-0.20	0.10	0.68*	0.74*	0.53	0.01	-0.11	-0.17	-0.10	0.14
0.33	0.39	0.25	0.33	-0.49	0.25	0.17	0.75*	0.79**	0.85**	0.02	0.02	-0.46	-0.30	-0.13	-0.38	-0.13	-0.40	-0.35	-0.26
0.28	-0.03	-0.11	-0.31	0.08	0.24	0.24	-0.09	-0.18	-0.08	-0.07	-0.12	-0.18	-0.38	-0.18	0.47	0.45	0.13	0.10	-0.14
0.61	0.45	0.09	-0.16	-0.43	-0.00	-0.17	0.09	0.21	0.47	-0.51	-0.23	0.27	0.28	0.64*	0.41	0.21	0.27	0.29	0.25
0.47	0.80**	0.15	0.08	-0.07	0.63*	0.39	0.22	0.20	0.31	0.23	0.38	0.60	0.64*	0.39	0.35	0.05	0.25	0.34	0.60
0.32	0.69*	0.14	0.31	-0.12	0.45	0.26	0.16	0.23	0.24	-0.06	0.08	0.65*	0.65*	0.29	-0.16	-0.42	-0.52	-0.47	-0.09
0.05	0.12	-0.50	-0.58	0.28	-0.23	-0.32	0.42	0.36	0.53	-0.32	-0.24	0.53	0.60	0.48	0.73*	0.62	0.52	0.51	0.20
-0.23	0.67*	-0.17	-0.05	-0.06	0.17	0.03	0.33	0.35	0.65*	0.18	0.48	0.40	0.52	0.42	0.55	0.39	0.03	0.07	0.32
*Significant at 5 per cent level **Significant at 1 per cent level																			
TMax TMin= RH Ma RH Mi $\mathrm{WS}=\mathrm{W}$	$\begin{aligned} & =\text { Maxi } \\ & \text { Minim } \\ & x=\text { Max } \\ & =\text { Min } \\ & \text { ind spe } \end{aligned}$	um te m ten mum num r (Kn	perat peratur ative ative h)	re $\left({ }^{\circ} \mathrm{C}\right.$ $\left({ }^{\circ} \mathrm{C}\right)$ umidi umidi	(\%) $(\%)$														

0600 (0.09) and $0800 \mathrm{~h}\left(0.42 / \mathrm{m}^{2} / 5\right.$ minutes). A. dorsata population was lowest at $0600 \mathrm{~h}\left(0.50 / \mathrm{m}^{2} / 5\right.$ minutes $)$, increased significantly and progressively at $0800 \mathrm{~h}(1.50)$, 1000 h (4.13) and 1200 h (8.93) and was maximum at 1400 h (9.57) before decreasing marginally at 1600 h (7.37) and moderating at $1800 \mathrm{~h}\left(2.30 / \mathrm{m}^{2} / 5\right.$ minutes $)$. A. mellifera however, was not recorded at 0600 h , had a lower population at 0800 (0.57), before moderating at 1000 (2.33) and $1200 \mathrm{~h}(4.73)$ and peaked at 1400 h (5.70) before declining marginally at 1600 h (4.53) and further declining at 1800 h (0.97 foragers $/ \mathrm{m}^{2} / 5$ minutes). Similar was the pattern of other domesticated honey bee, A. cerana at drastically lower levels except that it was not recorded upto 0800 h . Pattern of A. florea was similar to A. dorsata but at lower levels. Syrphid fly Eristalinus spp. population was lower upto $0800 \mathrm{~h}(0.60)$ and was moderate throughout the days and that of H. armigera was lower in the morning, moderated later and higher in afternoon at 1600 h (4.03) and evening (3.40). During 2013, (Table 5) floral visitors were most abundant at 1400 and 1200 h (2.41 and $2.31 / \mathrm{m}^{2} / 5$ minutes), moderate at $1600(2.08)$ and $1000 \mathrm{~h}(1.74)$ and minimum in the morning hours of 0600 and $0800 \mathrm{~h}(0.18,0.77$, respectively) and $1800 \mathrm{~h}\left(0.98 \mathrm{~m}^{2} / 5\right.$ minute $)$. A. mellifera population was lower in the early morning hours of 0600 and 0800 h (0.07 and $0.90 / \mathrm{m}^{2} / 5$ minute), moderated at $1000 \mathrm{~h}(2.93)$ and peaked from 1200 to $1400 \mathrm{~h}(4.03$ to 4.57) and still higher at $1600 \mathrm{~h}(3.87)$ and $1800 \mathrm{~h}(1.87)$. A. dorsata populations were low at $0600 \mathrm{~h}(0.23)$ and moderated later to peak at 1400 h (5.23 bees). A. florea peak was recorded at 1200 and 1400 h (2.87 and 2.83) and had higher populations in the day. Megachile sp. and P. olivaceus had similar pattern of apoidea and Eristalinus spp. maintained relatively higher populations throughout the day with a low in the early morning.

Similar findings were reported by Shivrana (1996) who observed maximum abundance of A. dorsata at 1400 h (6.40/10 flowers) followed by at 1300 (6.13) and 1200 h (5.87); moderate at 0900 (2.67) and $1500 \mathrm{~h}(3.53)$ and least in the morning hours at 0800 (0.40). He further reported that A. mellifera and A. florea were most abundant at 1400 h (15.33 and 3.60) moderate at 1000 (8.20 and 3.33) and were least during morning hours of 0800 (0.60 and 0.00 , respectively). Abrol (1985) also recorded maximum activity of bees between 1100 to 1400 h while

Malaviya et al., (1999) observed it from 0800 to 1100 h and in evening 1500 to 1600 h . Batra (1976) from Punjab also reported maximum intensity of A. mellifera at 1500 $\mathrm{h}\left(5.40\right.$ bees $/ \mathrm{m}^{2} / \mathrm{min}$.) than at $1200 \mathrm{~h}(4.50$ bees $)$ while for A. dorsata, it was maximum at 1200 h (1.40) and minimum at $0900 \mathrm{~h}\left(0.10\right.$ bees $/ \mathrm{m}^{2} / \mathrm{min}$.). However, the present findings are in stark contrast to Narayanan et al., (1961) from Bihar, who showed that the honey bees (A. indica, A. florea and A. dorsata) started foraging at 0700 h and their activity was maximum from $0800-1100 \mathrm{~h}$ and bees were not seen after 1300 h . A. cerana was almost negligible or absent at all hours during 2013. The absence of wild bees could be attributed to various agricultural practices adopted by the farmers over the time period that has resulted in habitat destruction as the presence of other attractive rewards during this period is ruled out. Similar trend was observed by Narayanan et al. (1961) who reported decline in the visits of wild bees, A. dorsata and A. florea on this crop in certain years.

Correlations of abundance of different floral visitors with weather parameters

Abundance of floral visitors is dependent on weather parameters especially temperature, relative humidity, wind speed and many other crop dependent factors that are dynamic over time and space.
Abundance of A. mellifera and A. dorsata during 2012 (Table 3) had a highly significant positive correlation with wind speed $(\mathrm{r}=0.77$ and 0.86$)$ at 0800 h while the later was also correlated with maximum (negative) and minimum relative humidity at $1800 \mathrm{~h}(\mathrm{r}=-0.89$ and 0.85 , respectively). The A. florea abundance was positively correlation with RH (minimum and maximum) ($\mathrm{r}=0.82$, 0.71) at 0800 and negatively with RH (minimum and maximum, $r=-0.79$ and $r=-0.71$) at 1200 h . Wind speed significantly affected A. cerana population $(\mathrm{r}=0.84)$ at 1800 h and that of syrphid fly, Eristalinus spp. (r=0.67) at 0800 h . During 2013, (Table 6) A. mellifera population was positively correlated with minimum temperature at 1800 and $0800 \mathrm{~h}(\mathrm{r}=0.77,0.64)$ and RH at 0800 h $(\mathrm{r}=0.74)$. A. dorsata too had highly significant correlation with RH (maximum) at 0800 h , minimum and maximum temperature at 1200 and 1800 h . Eristalinus spp. was positively correlated with RH (minimum) at 0800 and wind
speed at 1600 h . These studies form the first report where visitor's abundance is correlated with weather parameters in T. alexandrinum. Though Shivrana (1996) generalized to report a highly significant positive correlation of A. dorsata, A. mellifera, A. florea with temperature and negative with relative humidity.

Dhaliwal and Atwal (1976) generalized maximum abundance of 5 honey bee species (A. dorsata, A. mellifera, A. florea, M. flavipes and P. smaragdula) at $31.0^{\circ} \mathrm{C}, 54$ per cent RH and wind speed of 0.20 kmph and the lowest abundance at $35^{\circ} \mathrm{C}$, 52 per cent RH and wind speed of 1.00 kmph . Thakur (2007) from Uttrakhand, recorded congenial range of temperature $\left(31-35^{\circ} \mathrm{C}\right)$ and RH (51-58\%) for A. mellifera and recorded maximum abundance at $32^{\circ} \mathrm{C}$ and 57 per cent RH. According to Alexander (1980) foraging activity of bees increased with temperature upto $30^{\circ} \mathrm{C}$ while Abrol (1985) reported it at an air temperature of $29-38^{\circ} \mathrm{C}$ and RH of 16 to 45 per cent.

References

Abrol, D.P. 1985. Analysis of biophysical interaction in causing foraging behavior of some bees- A study in bioenergetics. Ph.D. Thesis submitted to CCS Haryana Agricultural University, Hisar, India.
Alexander, R.M. 1980. Optima for Animals McGraw hill, London, p. 342.
Batra, S.W.T. 1976. Comparative efficiency of alfalfa pollination by Nomia melanderi, Megachile rotundata, Anthidium
florentinum and Pithitis smaragdula (Hymenoptera: Apoidea). Journal of Kansas Entomological Society 49: 18-22.
Dhaliwal, J.S. and Atwal A.S. 1976. Note on the effect of air temperature, relative humidity and wind velocity on bees visiting berseem at Ludhiana. Indian Journal of Agriculture Sciences 46: 50-51.
Deodikar, G.B. and Suryanarayana, M.C. 1977. Pollination in the service of increasing farm production in India. Advances in Pollen Spore Research 2: 67-87.
Narayanan, E.S., Sharma, P.L., and Phadke, K.G. 1961. Studies on requirements of various crops for insect pollination insect pollinators of Egyptian clover (Triflolium alexandrinum) with particular reference to honey bees and their role in seed setting. Indian Bee Journal 23(4/6): 23-30.
Malaviya, D.R., Pandey, K.C., Roy, A.K. and Kaushal, P. 1999. Role of honey bees in seed setting of Egyptian clover. Crop Improvement 26(2): 204-207.
Singh, J., Yadav. S. and Chhuneja, P.K. 2012. Quantitative and qualitative enhancement in Trifolium alexandrium seed production through pollination by Apis mellifera L . Indian Journal of Applied Entomology 26(1): 50-53.
Sharma, S.K. and Singh, J.R. 2003. Pollination efficiency of Apis sp. on Egyptian clover (Trifolium alexandrinum L.) Forage Research 28(4): 218-219.
Shivrana, S. 1996. Studies on foraging dynamics of some Apis sp. Ph.D. Thesis submitted to CCS, Haryana Agricultural University, Hisar, Haryana, India.

Thakur, S.S. 2007. Effect of ecological conditions on bee behaviour on different crops at Pantnagar, Uttrakhand. Journal of Entomological Research 31(3): 247-250.

[^0]: *Observations are mean of 21 replications (7 intervals $\times 3$ replications). ${ }^{* *}$ Figures in parentheses are $\sqrt{n}+1$ valu

