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INTRODUCTION

In the United States, approximately 200,000 people live with 
RCC annually (Cairns, 2011). The mortality rates of these 
patients are 19%, 26%, 47%, and 92% for stages 1, 2, 3, and 
4, respectively, indicating the need for early detection (Cairns, 
2011). Those with metastatic RCC (pT4) have a median 
survival of around 13 months and a 5-year survival rate of 
under 10% (Cairns, 2011). RCC is a malignant cancer of the 
kidneys with numerous subtypes: Clear cell, collecting duct, 
chromophobe, mucinous tubular, multicellular, papillary, and 
renal medullary. The cancer is created from many specialized 
cells located along the nephron, the basic structure of the 
kidney. Only 2–4% of RCC in patients have hereditary 
causes, but a mutation in one or more of the following tumor 
suppressor genes – von Hippel-Lindau, fumarate hydratase, 
folliculin, and succinate dehydrogenase genes – which stops 
the cells from proliferating excessively and becoming cancer, 
has been found to increase the likelihood of a person to 
develop RCC (Martinez et al., 2000). The treatment options 
for patients are usually nephrectomy surgeries. If the cancer 
progresses too far, both kidneys may have to be removed, 
necessitating a kidney transplant (National Cancer Institute, 
2019).

In the UK in 2014, almost half of cancer patients were 
diagnosed too late, reducing the likelihood of their treatment 

success, and increasing the mortality of treatable cancers 
(Campbell, 2014). Late diagnosis is caused by an array of 
factors: The expense of tumor detection machines and the 
inefficiency of doctor diagnosis to name a few. After diagnosis, 
treatment options usually require invasive surgeries and scans, 
intimidating patients even further (Arruebo et al., 2011). 
Even with imaging, many early RCCs are not accurately 
distinguishable from other non-malignant renal lesions 
(American Cancer Society, 2019). Thus, a non-invasive cancer 
detection technology is needed. Research into biomarkers can 
be a promising avenue of developing early cancer diagnosis 
with a non-invasive analysis of patients’ blood.

A common biomarker for cancers and other diseases is 
microRNA: Non-coding, tiny RNAs that target messenger 
RNAs to regulate gene expression. They are transcribed from 
DNA sequences and do not code for protein like other RNAs; 
instead, they engage with target RNAs to suppress protein 
expression, create overexpression of certain specific genes, 
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or act signaling molecules to mediate cell communications 
(O’brien et al., 2018). The dysfunction of microRNAs 
manifested by altered microRNA concentrations is commonly 
present in either the tissue, blood, urine, or cerebrospinal fluid 
of disease-ridden patients (Moldovan et al., 2014). Malignant 
changes happen when mutations occur in genes, in which 
the oncogenes are activated, and tumor suppressor genes are 
inactivated. In microRNAs, overexpression leads to reducing 
oncogene expression and vice versa (Paranjape et al., 2009). 
Proto-oncogenes are genes that typically help cells grow. 
However, in a situation where further copies of proto-oncogene 
mutations are created, a gene can be permanently activated. 
This corrupted gene, which is always activated, causes a non-
stop proliferation of cancer cells (American Cancer Society, 
2019). Cancers are also believed to be created or able to grow 
by evading the process of apoptosis – programmed cell death 
that most cells undergo. Misregulation of microRNA can lead 
to the inactivation of tumor suppressor genes responsible for 
apoptosis and assists the proliferation of cells until the cancer 
is formed (American Cancer Society, 2019). Dysregulation 
of the microRNAs responsible for the inactivation of tumor 
suppressor genes and activation of oncogenes is an indicator 
for most types of cancer. However, it is not the only source 
of misregulation of genes that may cause cancer. Other issues 
include transcriptional misregulation, where the gene is unable 
to convert DNA to RNA correctly, leading to failed gene 
activity. This is a consideration while analyzing the role of 
microRNAs in cancers.

A statistical analysis of a dataset of cancer microRNAs was 
classified with random forests and support vector machine 
algorithms by Rehman et al. (2019). Since many microRNAs 
affect the subtype and outcome of cancer, ML was chosen 
as a suitable method to sort through the data (Strimbu and 
Travel, 2010). It concluded that ML could validate 12 
experimentally determined microRNA biomarkers of breast 
cancer. Zakrzewska et al. (2019) used RWeka with decision 
tree-based models to reveal altered microRNA expression 
patterns in neuronal-glial tumors. A random forest algorithm 
identified novel diagnostic markers for soft-tissue sarcoma 
that distinguished between synovial sarcoma and malignant 
peripheral nerve sheath tumor using gene expression data 
from the Genotype-Tissue Expression project and the French 
Sarcoma Group (van IJzendoorn et al., 2019).

In RCC, miR-17-5p and miR-224 both target hypoxia-
inducible factor 1α and Von Hippel-Landau (VHL) protein. 
These proteins are lost in approximately 70% of all RCCs, 
which may lead to an over-proliferation of nephrons and cancer 
(Al-Ali et al., 2012). In addition, miR-106b, miR-1233, miR-
1290, miR-210, miR-7-1, miR-320b, and miR-93 were all 
selected microRNAs that were highly differentially expressed 
in RCC by looking through microRNA profiles (Fedorko et al., 
2016). Bhowmick et al. (2018) utilized the Cancer Genome 
Atlas database, including 255 instances with renal clear cell 
carcinoma, to use ML to compile sets of possible microRNAs 
that often occur in various cancerous samples. Ten microRNAs 

were found to be most indicative of classification accuracy; 
they are possible biomarkers of RCC of clear cell subtype. 
Thirty-five discriminative microRNAs for the subtypes of 
RCC were found using data from the Cancer Atlas Genome 
project (Ali et al., 2018).

Previous research did not compare healthy and cancerous 
samples or tissue and blood microRNAs to find discriminative 
biomarkers of any subtype of RCC. This investigation hopes to 
use healthy and cancerous samples from all subtypes of RCC, 
differentiating between tissue and blood microRNAs, to build 
classification models that reveal discriminative microRNAs; 
those that overlap between tissue and blood models will be 
evaluated as potential new biomarkers. Clear cell, papillary, 
and chromophore are the subtypes being investigated because 
they are the most common (Cairns, 2011).

The Waikato Environment for Knowledge Analysis (Weka) 
interface will be used because it facilitates both dataset and 
algorithm exploration (Witten et al., 2016). A dataset specific 
to RCC was pulled from the Gene Expression Omnibus 
and the Cancer Genome Atlas. It has 18 data instances of 
microRNAs associated with chromophore RCC, 243 data 
instances of microRNAs for clear cell RCC, and 77 data 
instances of microRNAs for papillary RCC. Instances in 
these cases correspond to microRNAs, not the individual 
patient, so they will be reorganized to have microRNAs 
as attributes normalized to reads per million and with the 
instances characterized by patient id. All these databases 
have microRNA comparing cancerous tissue to normal tissue. 
However, they include other metal profiling such as high-grade 
versus low grade, metastasis, poor versus good outcome, and 
blood profiling. This can be used to describe the microRNA 
profiles of cancer patients (Luan et al., 2016). Following the 
successful classification of possible microRNA biomarkers, 
the mirTarBase database will be used to determine the gene 
targets of the microRNA biomarkers.

MATERIALS AND METHODS

Isoform microRNA expression values were downloaded from 
the Gene Expression Omnibus, submitted by Wach et al. 
(2013), and last updated in 2017. It includes data from two of 
the major subtypes, clear cell and papillary. These two subtypes 
represent approximately 90% of all RCC cases. The entire 
data set had 7815 microRNAs as features and a total of 29,690 
instances. The data were exported to excel and reformatted to 
classify the RCC subtype as either cancerous or healthy.

This process was repeated for each sample and added to the 
same data table. Missing values were substituted by the average 
expression for that attribute in the healthy or cancerous class. 
The dataset was converted into an AIFF file to be placed 
in Weka. Overfitting was avoided by cross-validation. This 
ensures that the software is not running the algorithm through 
the entire dataset until the model is complete. The algorithm 
is always unfamiliar with the testing data until it runs. Ten-
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fold is the standard because it creates enough splits to avoid 
familiarity. Four is the minimum number of folds that ensure 
some variance in a smaller dataset. Too many splits can lower 
the number of sample combinations in each fold and interfere 
with the algorithm’s accuracy. Since the dataset had a limited 
number of samples, 4-fold cross-validation was used to achieve 
variance and accuracy.

Six preliminary algorithms were run through the dataset with 
no feature selection as a baseline for results in Weka. Three 
feature selection techniques were tested as wrappers with each 
algorithm, and the best feature selection method was selected 
as Best First Attribute Selector (BFAS). This information is 
explained in the results section. BFAS is an information gain 
feature selection technique in which an optimization algorithm 
searches the space of attribute subsets by greedy hill-climbing, 
building a solution by constantly looking at the next attribute 
that offers the greatest and most immediate benefit iteratively 
and incrementally – augmented with a backtracking facility. 
This evaluates the added attribute’s benefit compared to the 
original one and removes it if it is detrimental. This feature 
selection technique was evaluated by CfsSubsetEval, which 
evaluates the worth of a subset of attributes by considering 
each feature’s individual predictive ability and the degree 
of redundancy between them. With this feature selection 
technique, a panel of 52 microRNAs was generated for the 
model.

Using BFAS, the top algorithms with the highest original 
accuracies were considered most suitable for the data: 
Unpruned J48 decision tree and Hoeffding tree. It is important 
to note that the name of the J48 decision tree varies; Weka 
labeled it as such (it is otherwise referred to as a C4.5 decision 
tree classifier). The Hoeffding tree algorithm is an incremental 
type of decision tree in which a new node is built from an 
attribute based on its value the Hoeffding bound equation (Bifet 
and Gavalda, 2013). The unpruned J48 algorithm is a standard 
decision tree that creates a node based on its mathematical 
benefit to the classification accuracy (Bhargava et al., 2013). 
The AUC-ROC, the area underneath the curve of receiver 
operating characteristics, is a performance metric created by 
taking the integral of a probability curve plotted against a 
model’s false-positive rate and measuring how well a model 
can distinguish between classes. The AUC-PRC, or the area 
underneath the recall curve, is a performance metric created 
from taking the integral of a curve of precision values plotted 
against recall value and represented the models’ tradeoff 
between precision and recall. A great model has an AUC-ROC 
and AUC-PRC value closer to 1, and a weak model has an 
AUC-ROC and AUC-PRC closer to 0. Both methods are used 
as performance metrics as they distinguish between classes 
by measuring separability. By depicting this distinction, it 
provides insight into how accurately and effectively the model 
works. Zheng et al. (2020) used an AUC-ROC on a microRNA 
data sample to demonstrate and compare the performance of 
the two models. The information gained from these metrics 
provided insight into the overall performance of the models. 

The models were compared to find the accuracy, precision, 
recall, AUC-ROC, and AUC-PRC in cancer prognosis.

RESULTS AND DISCUSSION

Equations for precision, recall, and accuracy:

= ×100True PositivesFormula for Precison %
True Positives+
False Positives

16= ×100 88.9%
18

Sample Calculation for Healthy ≅

= ×100True PositivesFormula for Recall %
True Positives+
False Negatives 

16 ×100 94.1%
17

Sample Calculation for Healthy = ≅

+

= ×100

True Positives
True NegativesFormula for Accuracy %   
Total Samples

16+18= ×100=91.89%
16+18+3

Sample Calculation 
for Accuracy

***AUC−ROC and AUC−PRC were generated from Weka

It is important to note that there was only one accuracy 
value for each model because accuracy is a measure of 
the model successfully predicting both healthy and RCC 
samples. Table 7, which showed the performance metrics for 
healthy versus cancerous classification with a Random Forest 
Algorithm, also had an accuracy of 91.892%, but the model 
was not deemed as an appropriate one due to its large size and 
tendency to overfit with the small sample size.

The unpruned J48 tree is less convoluted than the Hoeffding 
tree. It includes fewer nodes or pathways taken. An unpruned 
J48 decision tree was chosen over a pruned J48 decision tree 
because pruning is used to reduce the size of a tree and may 
lead to overfitting; since the unpruned J48 decision tree is 
relatively small, with two nodes as shown in Figure 1, there 

Figure 1: J-48 decision tree visualization: “H” indicates 
a healthy classification and “C” indicates a cancerous 
classification
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was no reason to try cutting the tree’s size down and risk 
overfitting a model of a small sample size that is already prone 
to overfitting. The J48 is an efficient algorithm because it can 
complete the task with few nodes.

Precision is the measure of true positives overall samples 
classified as positive. In Table 8, the precision for the 
unpruned J48 decision tree with BFAS was 93.8% for healthy 
classification and 90.5% for cancerous classification so that the 

Table 4: Performance metrics by healthy versus RCC 
with Ibk algorithm
Class Precision 

(%)
Recall 
(%)

AUC-ROC AUC-PRC Accuracy 
(%)

Healthy 78.6 64.7 0.741 0.662 75.678
RCC 73.9 85 0.741 0.716  

Table 6: Performance metrics by healthy versus RCC 
with Hoeffding Tree algorithm
Class Precision 

(%)
Recall 
(%)

AUC-ROC AUC-PRC Accuracy 
(%)

Healthy 100 52.9 0.781 0.772 78.378
RCC 71.4 100 0.753 0.704

Table 2: Performance metrics of healthy versus RCC 
with JRip algorithm
Class Precision 

(%)
Recall 
(%)

AUC-ROC AUC-PRC Accuracy 
(%)

Healthy 68.4 76.5 0.809 0.792 72.973

RCC 77.8 70 0.809 0.782

Table 3: Performance metrics by healthy versus RCC 
with SMO algorithm
Class Precision 

(%)
Recall 
(%)

AUC-ROC AUC-PRC Accuracy 
(%)

Healthy 91.7 64.7 0.799 0.755 81.081
RCC 76 95 0.799 0.749
SMO: Sequential minimal optimization

Table 1: Small section of the final dataset used – 
labeled as healthy or cancerous samples
#ID_REF 14q-0_st 14qI-1_st 14qI-2_st
H 0.6634 0.621946 0.195252
C 0.541661 0.591711 0.348382

Table 9: Performance metrics by healthy versus RCC 
with Best First Attribute Selection and Hoeffding Tree 
algorithm
Class Precision 

(%)
Recall 
(%)

AUC-ROC AUC-PRC Accuracy 
(%)

Healthy 88.9 94.1 0.896 0.848 91.89
RCC 94.7 90 0.894 0.908  

Table 5: Performance metrics by healthy versus RCC 
with J48 algorithm
Class Precision 

(%)
Recall 
(%)

AUC-ROC AUC-PRC Accuracy 
(%)

Healthy 88.2 88.2 0.915 0.848 89.189
RCC 90 90 0.915 0.904

Table 8: Performance metrics by healthy versus RCC 
with Best First Attribute Selection and J48 algorithm
Class Precision 

(%)
Recall 
(%)

AUC-ROC AUC-PRC Accuracy 
(%)

Healthy 93.8 88.2 0.943 0.899 91.892
RCC 90.5 95 0.943 0.929

Figure 2: The raw data set – unedited

Table 7: Performance metrics by healthy versus RCC 
with Random Forest Algorithm
Class Precision 

(%)
Recall 
(%)

AUC-ROC AUC-PRC Accuracy 
(%)

Healthy 84.6 64.7 0.731 0.780 91.892
RCC 90.0 90.0 0.731 0.715
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model can be evaluated as moderately precise on the testing 
data. The recall is the measure of true positives overall actual 
positives. While the recall of 88.2% for healthy classification is 
not considered vital, the 95% recall for cancerous classification 
is considered very strong. The correct diagnosis of cancer 
patients is weighted more heavily than the correct diagnosis 
of healthy patients when evaluating the model’s performance 
as desired.

Again, the ability for the model to diagnose cancerous 
patients is slightly more important than the ability to diagnose 
healthy patients, so the 0.929 AUC-PRC value for cancerous 
classification in Table 8 is indicative of a strong model.

Table 1 represents a subsection of the final edited data set 
as a reference point. Tables 2 through 6 contain various 
combinations of performance metrics of the algorithms. Table 
2 has a relatively low performance metric as well as Table 4 
and Table 6. In comparison, Table 3 and Table 5 were able 
to establish an accuracy of above 80%, but this was still not 
considered strong enough. Finally, while the accuracy value 
for Table 9 is extremely strong in respect to this research, 
it is still weaker than Table 7 and Table 8, thus it was not 
selected. Below is Table 10, a representation of the confusion 
matrix of each of the following algorithms with either gain 
ratio attribute evaluation or correlation attribute evaluation. 
This information provides insight into the false positive, 
false negative, true positive, and true negative presence in 
each model.

As seen above, Figure 2 represents the raw unedited data 
taken directly from the source with no changes made. In 
comparison, Figure 3 is that very source that was entered 
into excel. As the file size for both are quite large, only a 
small subsection was added.

The lower AUC-PRC value for healthy classification 
indicated that the Hoeffding tree was not as good of a model 
as the J48 model. Overall, significant evidence suggests that 
both models are strong enough to classify between healthy 
and cancerous samples in the RCC dataset. Specifically, both 
trees used the same two microRNAs as the critical features 
in their trees.

In addition, ACA39_st, abridged labeling of microRNA, was 
a significant feature used in both models that may be a novel 
biomarker that has not been recorded in literature. This is a 
variant of a microRNA coding linked to acetyl CoA, which is a 
protein primarily responsible for lipid metabolism. A properly 
functioning kidney must be able to metabolize lipid binding 
proteins well. In addition, improper lipid metabolism, and 
subsequent lipid accumulation, in the kidney has been a 
hallmark of the clear cell subtype of RCC (Sanchez and Simon, 
2018). Thus, there is some reasoning to believe a microRNA 
associated with acetyl CoA and the microRNA ACA39_st 
would play RCC. These results show a possible significant 
novel biomarker for RCC. A novel microRNA biomarker for 
RCC can open the door for cheap and efficient early detection 
of cancer, increasing the chance of survival. The role of acetyl 

Table 10: Performance metrics by healthy versus RCC with various feature selections
Feature selection type Algorithm Accuracy (%) Confusion matrix
Gain ratio attribute evaluation Hoeffding tree 83.78 a b [11 6 0 20 ]a=H b=c
Gain ratio attribute evaluation J48 tree 89.18 a b [15 2 2 18 ]a=H b=c
Correlation attribute evaluation Hoeffding tree 86.49 a b [12 5 0 20 ]a=H b=c
Correlation attribute evaluation j48 tree 89.18 a b [15 2 2 18 ]a=H b=c

 Figure 3: Small subsection of the data classified as healthy versus cancerous
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CoA (ACA39_st) is not clear; there is a need for future research 
that investigates the link between ACA39_st and RCC as a 
potential biomarker.

CONCLUSION

Zakrzewska et al. (2019) determined that the feature selected to 
give a model’s highest predictive ability may predict the patient’s 
disease or cancer. Thus, the microRNAs chosen as the nodes in the 
J48 model, bta-miR-200c_st and ACA39_st suspected to be highly 
predictive of RCC diagnosis. While the Hoeffding tree cannot 
be visualized, it uses all the 52 microRNAs in the preselected 
panel of features to build the tree, including bta-miR-200c_st and 
ACA39_st. The role of miR-200c in RCC has been supported in 
the past. Nakada et al. (2008) found significant downregulation 
of microRNAs miR141 and miR-200c in RCC profiling.
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