International Journal of Social Sciences Citation: IJSS: **10**(02): 123-126, June 2021 **DOI:** 10.46852/2249-6637.02.2021.5

Study on Yield Gap in Food Crops and Commodity Potential in Tamil Nadu

A. Malaisamy

Associate Professor, Agricultural Economics, Tamil Nadu Agricultural University, Tamil Nadu, India

Corresponding author: malaisamyecon@gmail.com (ORCID ID: 0000-0001-8822-6714)

Received: 20-03-2021

Revised: 29-05-2021

Accepted: 13-06-2021

ABSTRACT

The food production must increase substantially in pace with the population growth. However, the food production is limited due to land availability, climatic conditions, water resources, and many other biophysical factors. Quantifying the food production in every hectare is necessary to take counter measures to improve the yield growth. The yield gap is the variation between the average actual yield and the average expected yield. This study quantifies the yield gap in significant regions of the Tirunelveli district concerning Food Crops production. The study involves the historical information of Tirunelveli for a range of 20 years. This gap is likely due to degraded, less fertile soils, pockets of endemic cropping systems, and a low adoption rate of high yielding technologies by farmers. The yield gap in India reveals the bridgeable gap to be quite broad. The districts are clustered based on productivity and the yield gap. The inferences will help to take necessary precautions to reduce the yield gap and keep pace with the demand and the supply of essential food crops.

HIGHLIGHTS

- Yield gap analysis provides a measure of untapped food production capacity.
- Increase the yields on the existing croplands (i.e. closing the yield gaps) –Reallocate current agricultural production to more productive uses.
- A novel approach was developed to investigate causes of yield gap over large regions agricultural food crop demand is expected to increase by 50% by 2050.

Keywords: Yield gap, potential yield, average yield, cropping intensity, net area sown

Yield potential is the yield of a crop cultivar when grown in an environment to which it is adapted, with nonlimiting water and nutrient supplies, and with pests, weeds, and diseases effectively controlled (Sadras *et al.* 2015). The difference between Yp in rainfed conditions) and average producer yield is termed the yield gap (Yg). (Van Ittersum *et al.* 2013). The most common approach for assessing the magnitude and causes of Yield gap in localized areas involves conducting controlled research trials in which researchers experimentally evaluate various input levels or management practices to identify whether a particular input or practice improve yield and if the degree of yield improvement justifies input costs (Yang *et al.* 2017). Consequently, most studies addressing the causes of the Yield gap through onfarm trials have been confined to small geographic

How to cite this article: Malaisamy, A. (2021). Study on Yield Gap in Food Crops and Commodity Potential in Tamil Nadu. *Int. J. Soc. Sci.*, **10**(02): 123-126.

Source of Support: None; Conflict of Interest: None

Malaisamy

areas where field-to-field variation in weather is small Villamil *et al.* 2012).

Tirunelveli district is located in the southern part of Tamil Nadu and surrounded by Virudhunagar District on the North, Western Ghats on the West, Kanyakumari District on the South and Tuticorin District on the East. This District has three Revenue Divisions comprising 11 Taluks, 19 Development Blocks, 628 Revenue Villages, and 425 Village Panchayats. Tirunelveli district is provided with varied agro-climatic conditions ranging from extreme tropical to subtropical. The District is blessed with the Western Ghats from which the perennial rivers flow and drain towards the east (Silva et al. (2016). The entire surface water of the District is drained into major river basins viz., Thamiraparani, Vaippar, Nambiar, and Hanmanathi. Thamiraparani is the central river basin in the District. The other seasonal streams are Servallar, Manimuthar, Ramanathi, Pachayar, Chittar and Uppodai rivers, which drain into the Thamiraparani basin. The significant sources of irrigation are canals, Tank, and Well. The present study was to identify causes of the Yield gap across large Tirunelveli geographic areas, and results were presented.

MATERIALS AND METHODS

Tirunelveli District, Tamil Nadu, was purposively selected, as it formed one of the predominant food crops growing areas of the State. The sample size selected was 60, consisting of 20 farmers from marginal; small, and big farmer categories. A well-structured interview schedule was constructed, and data was collected from the respondents through the personal interview method.

Yield Gap = Potential Yield – Actual yield /Potential Yield X100

The yield gap was operationalized as the percent difference between potential yield (yield obtained at the Research Station) and the actual yield obtained in the farmers' field (Rowntree *et al.* 2013). The average yield gap was assessed for food crops for Paddy and Block Gram

RESULTS AND DISCUSSION

Trend in Area, Production, and Productivity of Major Crops in Tirunelveli District

The area and production and productivity (CGR) of major crops like paddy, Cholam, maize, sugarcane, and Bengal gram cotton of Tirunelveli district are given in Table 1.

Table 1: Growth Rates of Area, Production and Productivity of Major Crops in Tirunelveli

CGR for Principle Crops (percentage)									
S1. No.	Crop name	Area	Production	Productivity					
1	Paddy	0.705	0.749	0.044					
2	Cholam	-0.359	2.915	3.285					
3	Cumbu	-17.310	-13.428	4.694					
4	Maize	10.470	28.734	16.534					
5	Ragi	-16.596	-16.005	0.709					
6	Bengal gram	6.759	16.578	9.198					
7	Green gram	9.923	6.770	-2.868					
8	Red gram	-0.064	0.796	0.861					
9	Black gram	6.555	2.144	-4.139					
10	Horse gram	-9.378	-15.111	-6.327					
11	Chilles	-4.710	-1.075	3.814					
12	Turmaric	-8.024	-7.867	0.171					
13	Sugarcane	4.419	5.016	0.572					
14	Onion	4.675	9.926	5.017					
15	Gingelly	-2.995	1.943	5.090					

Projected Area, Yield and Production based on Current Trend

The Area, Production, Productivity of the crops for the year of 2023 has been calculated and furnished in the Table 2.

 Table 2: Projected Area, Production, Productivity for 2023

Sl. No. Crop name		Area (ha)	Production (Tonnes)	Productivity (Production/ Area	
1	Paddy	91681.366	376849.647	4.110	
2	Cholam	1999.376	7038.282	3.520	
3	Cumbu	23.165	93.620	4.041	

Study on Yield Gap in Food Crops and Commodity Potential in Tamil Nadu $_{\text{\tiny AESSRA}}$

4	Maize	39284.443	1036723.680	26.390
5	Ragi	8.878	25.987	2.927
6	Bengal gram	11.439	47.362	4.140
7	Green gram	32116.240	9120.879	0.284
8	Red gram	53.372	40.914	0.767
9	Black gram	38172.482	7216.634	0.189
10	Horse gram	30.123	4.035	0.134
11	Chilles	930.798	2059.196	2.212
12	Turmaric	1.155	5.961	5.163
13	Sugarcane	9557.126	911611.204	95.385
14	Onion	3774.095	100452.246	26.616
15	Gingelly	835.468	760.808	0.911

Paddy

Table 3: Yield Gap Analysis for Paddy in Tirunelveli District

Yield in Kg/ha Wield CARL Wield Gap									
Variety	Yield	GAP I	Yield	GAP II	-Over	all field	d Gap		
ADT 43	1895		1431		3326				
ADT 45	3330		1679		5009				
ASD 16	404		1046		1450				
ADT 39		249		1450	1450				
CO 49	1459		1666		3125				
BPT 5204	185		304		489				
		ADT	ADT	ASD	ADT	СО	ВРТ		
Ruling Va	rieties	43	45	ASD 16	39	49	5204		
Potential Y	ïeld	8381	9230	5600	7000	9750	7989		
Progressiv	e farmer								
yield		6486	5900 5196		6374	8291	7804		
Average Yi	ield	5055	4221	4150	6125	6625	7500		
Overall Yie	eld Gap	3326	5009	009 1450		3125	489		
Required C	Growth								
Rates		65.80	118.67	34.94	14.29	47.17	6.52		
Annual Gr	owth Rat	e 5.48	9.89 2.91		1.19	3.93	0.54		
Year	ADT 43	ADT 45	5 ASD	16 AD	DT 39	CO 49	BPT 5204		
2010-11	5055	4221	4150	612	5	6625	7500		
2011-12	5332	4638	4271 619		8	6885	7541		
2012-13	5625	5097	4395 627		2	7156	7582		
2013-14	5933	5601	4523	634	:6	7437	7623		
2014-15	6258	6155	4655	642	2	7730	7664		
2015-16	6601	6764	4790	649	8	8034	7706		
2016-17	6963	7433	4930	657	6	8349	7748		
2017-18 7345		8168	5073 6654		4	8678	7790		

2018-19 7748		8975	522	16	6733		7832
2019-20 8	3173	9863	5373	3 6	813	9373	7875
2020-21 8	3621	10838	5530) 6	6894		7918
2021-22	9093	11910	5693	6977		10125	7961
2022-23	9592	13088	5856	5 7	7060		8004
						Units	
Area under	Paddy			79764	4	На	
Production	2			35182	22	Tonne	es
Yield				4.41		Tonne	es
Doubling th	ne prod	uction		70364	14	Tonne	es
Yield	•			8.82		Tonne	es
	ADT	ADT	ASD	ADT	СО	BPT	
	43	45	16	39	49	5204	
Proportion							
of varieties	0.036	0.131	0.47	0.063	0.23	0.07	1
Area	2872	10449	37489	5025	18346	5583	79764
2011-12	15311	13319	12264	17797	19772	21653	100116
2012-13	16151	53260	164771	31516	131283	42332	439314
2013-14	17036	58527	169569	31891	136444	42562	456030
2014-15	17971	64315	174506	32271	141807	42794	473663
2015-16	18956	70675	179587	32655	147381	43026	492280
2016-17	19995	77664	184816	33044	153175	43260	511953
2017-18	21092	85344	190197	33437	159196	43495	532761
2018-19	22248	93784	195735	33835	165453	43731	554787
2019-20	23468	103058	201434	34238	171957	43969	578124
2020-21	24755	113250	207299	34646	178716	44208	602873
2021-22	26112	124449	213335	35058	185741	44448	629143
2022-23	27544	136756	219547	35476	193042	44690	657054
· ··							

In Tirunelveli district, the major paddy varieties are ASD 16 (47%), CO 49 (23%), ADT 45 (13%), BPT (7%), ADT 39 (6%) and ADT 43 (3%), The yield gap for this varieties are 1450kg/ha, 3125kg/ha, 5009kg/ha, 489kg/ ha, 875kg/ha and 3326 respectively. The required annual growth was worked out as 2.91 %, 3.93 %, 9.89 %, 0.54%, 1.19 % and 5.48 % respectively to reduce yield gap in this varieties. With this calculated annual growth rate, Tirunelveli district will reach the projected production near to double (657054 tonnes) in 2023 from the present level of 351822 tonnes.

Blackgram

In Tirunelveli district, the major Blackgram varieties are VBN 3 (60%), VBN 4 (20%), ADT 3 (10%), ADT 4 (2%), CO 5 (3%) and T 9 (5%). The yield gap for this varieties are 490kg/ha, 560kg/ha, 400kg/ha, 172kg/ha, 850kg/ha and 858kg/ha respectively. To reduce yield gap in this

varieties, the required annual growth was worked out as 12.19 %, 13.73%, 10.42 %, 3.35%, 16.87 %, and 50.35%, respectively. With this calculated annual growth rate, as per our Tamil Nadu Government, concentration on pulses on Tirunelveli district will reach the projected production of more than triple (23684 tonnes) in 2023 from the present level 3281 tonnes.

Variety	ld GA	ld GAP I		Y	Yield GAP II			Overall YG			
VBN3	436)			5	4			490		
VBN4	294	ł			2	66			560		
ADT3	63				3	37			400		
ADT4	100)			7	2			172		
CO5	830)			2	0			850		
Т9	844	-			1	4			858		
Ruling Varieti	es	VBN	3	VBN	4	ADT	3	ADT4	CO5	Т9	
Potential Yield		825		900		720		600	1270	1000	
Progresive farr yield	ner	389		606		657		500	440	156	
Average Yield		335		340		320		428	420	142	
Overall Yield O	Gap	490	490			400		172	850	858	
Required Growth Rates		146.27 164.7		1	1 125.00 40.19		202.38 604.23				
Annual Growt Rate	h	12.19		13.73		10.42		3.35	16.87	50.35	
Year	V	BN3	V	BN4	A	DT3	A	DT4	CO5	Т9	
2010-11	3	35	3	40	32	20	4	28	420	142	
2019-20	9	43	1	082	78	81	5	76	1708	5575	
2020-21	1	058	1	230	8	62	5	95	1996	8383	
2021-22	1	187	1	399	9	52	6	15	2332	12604	
2022-23	1	332	1	591	1(051	6	35	2726	18950	
									Units	6	
Area under Black gram					10459				Ha		
Production					3281				Tonnes		
Yield					0.31				Tonnes		
Doubling the production					6562				Tonnes		
Yield					0.63				Tonnes		

	VBN3	VBN4	ADT3	ADT4	CO5	Т9	
Proportion of							
varieties	0.6	0.2	0.1	0.02	0.03	0.05	1
Area	6275	2092	1046	209	314	523	10459
2011-12	2359	2426	2217	2776	3080	1340	14198
2019-20	5919	2263	816	120	536	2916	12570
2020-21	6640	2574	902	124	626	4384	15250
2021-22	7450	2927	995	129	732	6591	18824
2022-23	8358	3329	1099	133	855	9910	23684

Conclusion

Prioritize research and inform agricultural policies to ensure global food security through a focus on regions with the most significant unexploited yield gaps and most significant potential to close them through new high-yielding varieties. The spatial patterns of agricultural management practices and yield limitation, and the management changes that may be necessary to achieve increased yields.

REFERENCES

- Rowntree S.C. *et al.* 2013. Genetic gain × management interactions in soybean: I. Planting date. *Crop Sci.*, **53**(3): 1128-1138.
- Silva, J.V., Reidsma, P., Laborte, A.G. and Van Ittersum, M.K. 2016. Explaining rice yields and yield gaps in Central Luzon, Philippines: an application of stochastic frontier analysis and crop modelling. *Eur. J. Agron.*
- Sadras, V.O. *et al.* 2015. Yield Gap Analysis of Rainfed and Irrigated Crops: Methods and Case Studies FAO, Rome, Italy.
- Van Ittersum, M.K. *et al.* 2013. Yield gap analysis with local to global relevance—a review. *Field Crops Res.*, **143**: 4-17.
- Villamil, M.B., Davis, V.M. and Nafziger, E.D. 2012. Estimating factor contributions to soybean yield from farm field data *Agron. J.*, **104**(4): 881-887.
- Yang, H., P. Grassini, K.G. Cassman, R.M. Aiken, P.I. 2017. Coyne Improvements to the Hybrid-maize model for simulating maize yields in harsh rainfed environments. *Field Crops Res.*, 204: 180-190.