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Abstract

The fuzzy logic and fuzzy numbers have been applied in many fields such as operation research, differential equations, 
fuzzy system reliability, control theory and management sciences etc. The fuzzy logic and fuzzy numbers are widely 
used in engineering applications also. In this paper we first describe Trapezoidal Fuzzy Number (TrFN) with arithmetic 
operations and solve a linear programming problem by Trapezoidal Fuzzy Number (TrFN) using simplex algorithm.
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A fuzzy set in a universe X is defined by membership 
function that maps X to the interval[0, 1] and therefore 
implies a linear, i.e. total ordering of the[27] elements 
of X, one could argue that this makes them 
inadequate to deal with incomparable information. 
A possible solution, however, was already implicit 
in Zadeh’s[29],[30],[31] seminal paper in a footnote; he 
mentioned that “in a more general setting, the range of 
the membership function can be taken to be a suitable 
partially ordered set P.” In every sector of our life,[1]

[2][3][21][22] there arise several problems which can be 
formulated mathematically as optimization problem 
with the goal to maximize the profit or to minimize 
the cost to formulate the problem mathematically, 
some constrains or restrictions are to be considered. 
Linear programming is a one of the most important 
operation research technique and it is applied in 
many sector especially related to the optimization 
problem. Linear programming was first introduced 
by George Dantzig in 1947. Linear programming 

is a technique that is to optimize the use of limited 
resources. Formulation of fuzzy linear programming 
was first introduced by Zimmermann. Deldago[23] 
makes a general model of fuzzy linear programming 
within the limits of technical coefficients fuzzy and 
fuzzy right side. Fung and Hu[28] introduced the linear 
programming with the technique coefficients based 
on fuzzy numbers. Verdegay define the dual problem 
through parametric linear program and shows that 
the problem of primal - dual fuzzy linear program 
has the same solution. In this paper we consider the 
linear programming problem in its standard form 
to find out its feasible and optimal solution. We use 
simplex algorithm by trapezoidal fuzzy number[12][13]

[14][15][16] to solve the linear programming problem.

Generalized Fuzzy Number (GFN)
Chen (1985, 1990) represented a Generalized 

Trapezoidal Fuzzy Number (GTrFN) A


as 
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( )1 1 1 1, , , ; ,0 1A a b c d w w= ≤


 and 1 1 1, ,a b c  and 1d  

are real numbers. The generalized Fuzzy number A


is a fuzzy subset of real line R, whose membership 

function 
A

µ


satisfies the following conditions:

• 1 1a x b≤ ≤  is a continuous mapping from R to 

the closed interval [ ]0,1

• ( ) 10,
A

x x aµ = −∞ < ≤


• ( )
A

xµ


is strictly increasing with constant rate 

on 1 1a x b≤ ≤

• 
( )

A
x wµ =



, where 1 1b x c≤ ≤

• 
( )

A
xµ



is strictly decreasing with constant rate 

on 1 1c x d≤ ≤

• 
( ) 10,

A
x d xµ = ≤ < ∞



Definition: A GTrFN ( )1 1 1 1, , , ;A a b c d w=


 is a fuzzy 
set of [24],[25],[26] the real line R whose membership 

function ( ) [ ]: 0,
A

x R wµ →


is defined as,

( )

( )

( )

1

1 1 1 1

1 1

1 11

1 1

,

,

,

0

w

LA

w

A
w

RA

x a
x w

b a Fora x b

w Forb x c
x

Forc x dd x
x w

otherwised c

µ

µ
µ

  −=  − ≤ ≤ 
 ≤ ≤=  ≤ ≤ − =   − 








Where 1 1 1 1a b c d< < < and ( ]0,1w∈

Now if 1w =  the generalized trapezoidal fuzzy 

number A


 is called Trapezoidal Fuzzy Number 

(TrFN) and is denoted as ( )1 1 1 1, , ,A a b c d=


( )

( )

( )

1

1 1 1 1

1 1

1 11

1 1

,

1 ,

,

0

LA

A

RA

x a
x

b a Fora x b

Forb x c
x

Forc x dd x
x

otherwised c

µ

µ
µ

  −=  − ≤ ≤ 
 ≤ ≤=  ≤ ≤ − =   − 








Property 1: If ( )1 1 1 1 1, , ,A a b c d=


 and 

( )2 2 2 2 2, , ,A a b c d=


, then 1 2A A⊕
 

is a fuzzy number 

( )1 2 1 2 1 2 1 2, , ,a a b b c c d d+ + + +
.

Proof: With the transformation 1 2y x x= + , we 
can find the membership function of fuzzy set 

1 2y A A= ⊕
  

by α -cut method.

Let the left-hand α -cut of 1A


, 0 1α≤ ≤  is 

( ) ( )
1 1 1 1A LX a b aα α= + − , the right hand is 

( ) ( )
1 1 1 1A RX d d cα α= + − i.e. 

( ) ( ){ }1 1 1 1 1 1 1,x a b a d d cα α∈ + − + − .

The left-hand α -cut of 2A


, 0 1α≤ ≤ is 

( ) ( )
2 2 2 2A LX a b aα α= + − , the right hand is 

( ) ( )
2 2 2 2A RX d d cα α= + − i.e. 

( ) ( ){ }2 2 2 2 2 2 2,x a b a d d cα α∈ + − + − . 

So,
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( )
( ) ( )( )
( ) ( )( )

1 2 1 1 2 2

1 2

1 2 1 1 2 2

,a a b a b a
y x x

d d d c d c

α

α

 + + − + −
 = + ∈
 + − − + − 

…(1)

Therefore we have,

1 2
1 2 1 2

1 2 1 2

,
y a a

a a y b b
b b a a

α
 − −= + ≤ ≤ + + − −   

…(2)

1 2
1 2 1 2

1 2 1 2

,
d d y

c c y d d
d d c c

α
 + −= + ≤ ≤ + + − −   

…(3)

From (2) and (3) we have the membership function, 

of 1 2y A A= ⊕
  

( )

1 2

1 2 1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2

1 2 1 2

,

1 ,

,

0

y

y a a

b b a a a a x b b

b b x c c
y

d d y c c x d d

d d c c otherwise

µ

− −
 + − − + ≤ ≤ +

+ ≤ ≤ +
=  + − + ≤ ≤ +

 + − −





Thus we have ,

( )1 2 1 2 1 2 1 2 1 2, , ,A A a a b b c c d d⊕ = + + + +
 

If we consider for n Trapezoidal Fuzzy Number, 

( ) ( )
( )

1 1 1 1 1 2 2 2 2 2, , , , , , , ,

................., , , ,n n n n n

A a b c d A a b c d

A a b c d

= =

=

 



then 1 2

1 1 1 1

.... , , ,
n n n n

n i i i i
i i i i

A A A a b c d
= = = =

 ⊕ ⊕ ⊕ =   
∑ ∑ ∑ ∑

  

Property 2: If A
1 ( )1 1 1 1 1, , ,A a b c d=



and 

( )2 2 2 2 2, , ,A a b c d=


then 1 2X XΘ
 

is a fuzzy number

( )1 2 1 2 1 2 1 2, , ,a a b b c c d d− − − −

Proof: With the transformation 1 2y x x= −  , we 
can find the membership function of fuzzy set 

1 2y A A= Θ
  

by α -cut method. Let the left-hand α

-cut of 1X


, 0 1α≤ ≤ is ( ) ( )
1 1 1 1A LX a b aα α= + −

,the right hand is ( ) ( )
1 1 1 1A RX d d cα α= + −

i.e. ( ) ( ){ }1 1 1 1 1 1 1,x a b a d d cα α∈ + − + − . 

The left-hand α -cut of 2A


, 0 1α≤ ≤

is ( ) ( )
2 2 2 2A LX a b aα α= + − , the right 

hand is ( ) ( )
2 2 2 2A RX d d cα α= + − i.e. 

( ) ( ){ }2 2 2 2 2 2 2,x a b a d d cα α∈ + − + − .

So,

( )
( ) ( )( )
( ) ( )( )

1 2 1 1 2 2

1 2

1 2 1 1 2 2

,a d b a d c
y x x

d a d c b a

α

α

 − + − + −
 = − ∈
 − − − + −    

 …(5)

Therefore we have,

1 2
1 2 1 2

1 2 1 2

,
y a d

a a y b b
b d a c

α
 − += − ≤ ≤ − + − − 

 …(6)

1 2
1 2 1 2

2 1 1 2

,
d a y

c c y d d
b d c a

α
 − −= − ≤ ≤ − + − − 

 …(7)

From (6) and (7) we have the membership function 

of 1 2y A A= Θ
  

As ( )1 2 1 2 1 2 1 2 1 2, , ,A A a a b b c c d dΘ = − − − −
 

Thus we have, 

( )1 2 1 2 1 2 1 2 1 2, , ,A A a a b b c c d dΘ = − − − −
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Property 3: If ( )1 1 1 1 1, , ,X a b c d=


and 

( )2 2 2 2 2, , ,X a b c d=


then 1 2X X⊗
 

is a fuzzy number

( )1 2 1 2 1 2 1 2, , ,a a b b c c d d

Proof: With the transformation 1 2y x x= , we 
can find the membership function of fuzzy set 

1 2y A A= Θ
  

by α -cut method. Let the left-hand α

-cut of 1X


, 0 1α≤ ≤ is ( ) ( )
1 1 1 1A LX a b aα α= + −

, the right hand is ( ) ( )
1 1 1 1A RX d d cα α= + −

i.e. ( ) ( ){ }1 1 1 1 1 1 1,x a b a d d cα α∈ + − + − . 

The left-hand α -cut of 2A


, 0 1α≤ ≤

is ( ) ( )
2 2 2 2A LX a b aα α= + − , the right 

hand is ( ) ( )
2 2 2 2A RX d d cα α= + −

i.e. ( ) ( ){ }2 2 2 2 2 2 2,x a b a d d cα α∈ + − + −

( )1 2y x x= ∈

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

2 2,1 2 1 1 2 2 1 2 2 2 1 1 1 2

1 1 2 2 1 2 2 2 1 1

a a b a b a a b a a b a d d

d c d c d d c d d c

α α α

α

 
+ − − + − + − + 

 
− − − − + −  

…(8)

Therefore we have,

 

2

1 2 1 2

4
,

2

B B AC
a a y b b

A
α − + −= ≤ ≤

 …(9)

And 
/ /2 / /

1 2 1 2/

4
,

2

B B A C
c c y d d

A
α − − −= ≤ ≤  

…(10)

From (9) and (10) we have the 

membership function of 1 2y X X= ⊗
 

 as 

( )

2

1 2 1 2

1 2 1 2

/ /2 / /
1 2 1 2

/

4
,2

1 ,

,4

2
0

y

B B AC
a a y b bA
b b y c c

y
c c x d dB B A C

otherwiseA

µ

 − + −
 ≤ ≤
 ≤ ≤=  ≤ ≤− − −






Where,

( )( )1 1 2 2A b a b a= − − , ( ) ( )1 1 1 2 2 2B a b a a b a= − + −

, 1 2C a a y= − , ( )( )/
1 1 2 2A d c d c= − − ,

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )
2

1 2 1 1 2 2 1 2 2 2 1 1

2
1 2 1 1 2 2 1 2 2 2 1 1

[

]

a a b a b a a b a a b a

d d d c d c d d c d d c

α α
α α

+ − − + − + −
=

+ − − − − + −

and /
1 2C d d y= −

Now, 

( ) ( )
( ) ( )

1 1 1 1 1 1 1

2 2 2 2 2 2 2

, ,

,

A a b a d d c

A a b a d d c

α α

α α

 = + − − − 
 = + − − − 





( ) ( )
( ) ( )

1 2 1 1 1 1 1 1

2 2 2 2 2 2

,

,

A A a b a d d c

a b a d d c

α α

α α

 ⊗ = + − − − ⊗ 
 + − − − 

 

 

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )
2

1 2 1 1 2 2 1 2 2 2 1 1

2
1 2 1 1 2 2 1 2 2 2 1 1

[

]

a a b a b a a b a a b a

d d d c d c d d c d d c

α α
α α

+ − − + − + −
=

+ − − − − + −

Property 4:

If ( )1 1 2 3 4, , ,Y y y y y=


and , 0v ky k= > then v k y=
 

is a fuzzy number ( )1 2 3 4, , ,ky ky ky ky

If ( )1 1 2 3 4, , ,Y y y y y=


and , 0v ky k= >  then v k y
 

is a fuzzy number ( )4 3 2 1, , ,ky ky ky ky
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Proof: When k>0, with the transformation 
y=ku, we can find the membership function 

of fuzzy set y kU=
 

by α − cut method. Let 

the left-hand α − cut of ,0 1U α≤ ≤


is, the 

right-hand is ( ) ( )4 4 3URX u u uα α= − −  i.e. 

( ) ( )1 2 1 4 4 3,u u u u u u uα α∈ + − − −   .

So, 

( ) ( ) ( )1 2 1 4 4 3,y ku ku ku ku ku ku kuα α= ∈ + − − −  
Therefore, we have,

1
1 2

2 1

,
y ku

ku y ku
ku ku

α −= ≤ ≤
−

 …(12)

And 
4

3 4
4 3

,
ku y

ku y ku
ku ku

α −= ≤ ≤
−  …(13)

From (12) and (13) we have the membership function 

of y k u=
 

is 

( )

1

2 1 1 2

2 3

4 3 4

4 3

,
,

1 ,

,
,

0

y

y ku

ku ku ku y ku

ku y ku
y

ku y ku y ku

ku ku otherwise

µ

−
 − ≤ ≤

≤ ≤
=  − ≤ ≤

 −





Similarly we can prove that, if y=ku, k<0 then,

( )

4

4 3 4 3

3 2

2 11

2 1

,
,

,1

,
,

0

y

ku y

ku ku ku y ku

ku y ku
y

ku y kuy ku

ku ku otherwise

µ

−
 − ≤ ≤

≤ ≤
=  ≤ ≤−

 −





Property 5: If ( )1 1 1 1 1, , ,X a b c d=


and 

( )2 2 2 2 2, , ,X a b c d=


then 1 2X X∅
 

is a fuzzy number

( )1 2 1 2 1 2 1 2/ , / , / , /a a b b c c d d

Proof: With the transformation 1

2

x
y

x
=  , we 

can find the membership function of fuzzy set 

1 2y A A= ∅
  

by α -cut method. Let the left-hand α

-cut of 1X


, 0 1α≤ ≤ is ( ) ( )
1 1 1 1A LX a b aα α= + −

, the right hand is ( ) ( )
1 1 1 1A RX d d cα α= + −

i.e. ( ) ( ){ }1 1 1 1 1 1 1,x a b a d d cα α∈ + − + − . 

The left-hand α -cut of 2A


, 0 1α≤ ≤

is ( ) ( )
2 2 2 2A LX a b aα α= + − , the right 

hand is ( ) ( )
2 2 2 2A RX d d cα α= + −

i.e. ( ) ( ){ }2 2 2 2 2 2 2,x a b a d d cα α∈ + − + − .

So,

( ) ( )
( )

( )
( )

1 1 1 1 1 1
1 2

2 2 2 2 2 2

/ , ,
a b a d d c

y x x
a b a d d c

α α
α α

 + − − −
= ∈  + − − −   

…(16)

Therefore we have,

( ) ( )
1 2

1 2 1 2
2 2 1 1

, / /
a a y

a a y b b
y b a b a

α
 −= ≤ ≤  − − − 

…(17)

( ) ( )
1 2

1 2 1 2
1 1 2 2

, / /
d d y

c c y d d
d c y d c

α
 −= ≤ ≤  − − − 

…(18)
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From (17) and (18) we have the membership function 

of 
1 2y A A= ∅

  

 as

( )

( ) ( )

( ) ( )

1 2

2 2 1 1 1 2 1 2

1 2 1 2

1 2 1 21 2

1 1 2 2

,
/ / , ,

1 / / ,

/ / ,
,

0

y

a a y

y b a b a a a y b b

b b y c c
y

c c y d dd d y
otherwised c y d c

µ

 −
  − − − ≤ ≤ 
 ≤ ≤=  ≤ ≤ −
  − − − 





Thus we have,

( )1 2 1 2 1 2 1 2 1 2/ , / , / , /A A a a b b c c d d∅ =
 

Construction and solution procedure of a LPP by 
Trapezoidal Fuzzy Number (TrFN) using simplex 
algorithm .:[7][8][9][10][11]

Consider the following steps
1. Make a change of variables and normalize the 
sign of the independent terms.

 A change is made to the variable naming, establishing 
the following correspondences: x becomes x1 and y 
becomes x2.

As the independent terms of all restrictions are 
positive no further action is required. Otherwise 
there would be multiplied by “-1” on both sides of 
the inequality (noting that this operation also affects 
the type of restriction).

2. Normalize restrictions
The inequalities become equations by adding slack, 
surplus and artificial variables as the following table:

Inequality type Variable that appears

≥  - surplus + artificial

= + artificial

≤ + slack

In this case, a slack variable ( 3x


, 4x


and 5x


) is 
introduced in each of the restrictions of ≤  type, to 

convert them into equalities, resulting the system of 
linear equations:

 ( ) ( ) ( )1 2 32,3, 4,5 1, 2,3, 4 1,1,1,1 50x x x+ + =
  

 ( ) ( ) ( )1 2 42,3, 4,5 4,5,6,7 1,1,1,1 100x x x+ + =
  

 ( ) ( ) ( )1 2 52,3, 4,5 3,4,5,6 1,1,1,1 90x x x+ + =
  

3. Match the objective function to zero.

( ) ( ) ( )
( ) ( )

1 2

3 4 5

 4,5,6,7 8,9,10,11 0,0,0,0

0,0,0,0 0,0,0,0

Max z x x

x x x

= + +

+ +

 

  

4. Write the initial tableau of Simplex method
The initial tableau of Simplex method consists of 
all the coefficients of the decision variables of the 
original problem and the slack, surplus and artificial 
variables added in second step and constraints (in 
rows). The Cb column contains the coefficients of the 
variables that are in the base. The first row consists of 
the objective function coefficients, while the last row 
contains the objective function value and reduced 
costs Cj-Zj. The last row is calculated as follows:

ij b iZ C X= ×∑ for i = 1.....m. Although this is the 
first tableau of the Simplex method and all Cb are null, 
so the calculation can simplified.

5. Stopping condition
If the objective is to maximize, when in the last 
row there is no negative value between discounted 
costs the stop condition is reached. In that case, the 
algorithm reaches the end as there is no improvement 
possibility. The Zj value is the optimal solution of the 
problem. Another possible scenario is all values are 
negative or zero in the input variable column of the 
base. This indicates that the problem is not limited 
and the solution will always be improved. Otherwise, 
the following steps are executed iteratively.
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6. Choice of the input and output base variables
First, input base variable is determined. For this, 
column whose value in Zj row greater than the all 
positive value is chosen. In this example it would 
be the variable X2. If there are two or more equal 
coefficients satisfying the above condition (case of 
tie), then choice the basic variable. The column of 
the input base variable is called pivot column .Once 
obtained the input base variable, the output base 
variable is determined.

The decision is based on a simple calculation: divide 
each independent term between the corresponding 
value in the pivot column, if both values are strictly 
positive (greater than zero). The row whose result is 
minimum score is chosen.

If there is any value less than or equal to zero, this 
quotient will not be performed. If all values of the 
pivot column satisfy this condition, the stop condition 

will be reached and the problem has an unbounded 
solution. The term of the pivot column which led to 
the lesser positive quotient in the previous division 
indicates the row of the slack variable leaving the 
base. In this example, it is X4. This row is called pivot 
row.

If two or more quotients meet the choosing condition 
(case of tie), other than that basic variable is chosen 
(wherever possible).

The intersection of pivot column and pivot row 
marks the pivot value.

7. Update tableau
The new coefficients of the tableau are calculated as 
follows:

In the pivot row each new value is calculated as:

New value = Previous value / Pivot

Table AU: 1

Cj (4,5,6,7) (8,9,10,11) (0,0,0,0) (0,0,0,0) (0,0,0,0) Solution Ratio
BV x

1
x

2
x

3
x

4
x

5

(0,0,0,0) x
3

(2,3,4,5) (1,2,3,4) (1,1,1,1) (0,0,0,0) (0,0,0,0) 50 (50,25,50/3,25/2)

(0,0,0,0) x
4

(2,3,4,5) (4,5,6,7) (0,0,0,0) (1,1,1,1) (0,0,0,0) 100 (25,20,50/3,20)

(0,0,0,0) x
5

(2,3,4,5) (3,4,5,6) (0,0,0,0) (0,0,0,0) (1,1,1,1) 90 (30,45/2,18,15)

Zj (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
Cj-zj (4,5,6,7) (8,9,10,11) (0,0,0,0) (0,0,0,0) (0,0,0,0)

Table AU: 2

(0,0,0,0) x
3

(3/2, 9/5, 2, 
15/17)       

(0,0,0,0) (1,1,1,1) (-1/4,-2/5,-1/2,-
4/7)

( 0,0,0,0) (25, 10, 0, -50/7) (50, 25, 50/3, 
25/2)

(8, 9, 10, 11) x
2

(1/2, 3/5, 2/3, 
5/7)

(1,1,1,1) (0,0,0,0) (1/7, 1/6, 1/5, 
1/4)

(0,0,0,0) (25, 20, 50/3,20) (25, 20, 50/3, 
20)

(0,0,0,0) x
5

(1/2, 3/5, 2/3, 
5/7)

(0,0,0,0) (0,0,0,0) (-3/4, -4/5, -5/6, 
-6/7)

(1,1,1,1) (5, 10, 20/3, 30/7) (30, 45/2, 18, 
15)

Zj (4,27/5, 20/3, 
55/7)

(8,9,10,11) (0,0,0,0) (8/7, 9/6, 10/5, 
11/4)

(0,0,0,0)

Cj-zj (0,-2/5, -2/3, 
-6/7)

(0,0,0,0) (0,0,0,0) (-8/7, -9/6, 
-10/5, -11/4)

(0,0,0,0)
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In the other rows each new value is calculated as:

New value = Previous value - (Previous value in pivot 
column * New value in pivot row)

So, the pivot is normalized (its value becomes 1).

The tableau corresponding to this second iteration is 
describe in table 2.

8. End of algorithm
It is noted that in the last row, all the coefficients are 

0≤ ; so the stop condition is fulfilled.

The solution is optimal as 0j jC Z− ≤ for all j. 
Hence the required solution is x1 = (0,0,0,0) and x2 = 
(25,20,50/3,20).

Fig. 1: simplex algorithm

Table AU: 3

Cj (4,5,6,7) (8,9,10,11) (0,0,0,0) (0,0,0,0) (0,0,0,0) Solution Ratio

BV x
1

x
2

x
3

x
4

x
5

(0,0,0,0) x
3

(2,3,4,5) (1,2,3,4) (1,1,1,1) (0,0,0,0) (0,0,0,0) 50 (50, 25, 50/3, 
25/2)

(0,0,0,0) x
4

(2,3,4,5) (4,5,6,7) (0,0,0,0) (1,1,1,1) (0,0,0,0) 100 (25, 20, 50/3, 
20)

(0,0,0,0) x
5

(2,3,4,5) (3,4,5,6) (0,0,0,0) (0,0,0,0) (1,1,1,1) 90 (30, 45/2, 
18,15)

Zj (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

Cj-zj (4,5,6,7) (8,9,10,11) (0,0,0,0) (0,0,0,0) (0,0,0,0)

x
3

(3/2, 9/5, 2, 15/17) (0,0,0,0) (1,1,1,1) (-1/4,-2/5,-1/2,-
4/7)

( 0,0,0,0) (25,10,0,-
50/7)

(50, 25, 50/3, 
25/2)

x
2

(1/2, 3/5, 2/3, 5/7) (1,1,1,1) (0,0,0,0) (1/7, 1/6, 
1/5,1/4)

(0,0,0,0) (25, 20, 50/3, 
20)

(25, 20, 50/3, 
20)

x
5

(1/2, 3/5, 2/3, 5/7) (0,0,0,0) (0,0,0,0) (-3/4, -4/5, 
-5/6,-6/7)

(1,1,1,1) (5, 10, 20/3, 
30/7)

(30, 45/2, 18, 
15)

Zj (4, 27/5, 20/3, 
55/7)

(8,9,10,11) (0,0,0,0) (8/7, 9/6, 10/5, 
11/4)

(0,0,0,0)

Cj-zj (0, -2/5, -2/3, -6/7) (0,0,0,0) (0,0,0,0) (-8/7, -9/6, 
-10/5,-11/4)

(0,0,0,0)
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Application
In this paper we are going to solve a linear 
programming problem by trapezoidal fuzzy number 
using simplex algorithm. Our problem is described 
below:

( ) ( )1 24,5,6,7 8,9,10,11Max z x x= +
  

Subject to constraint,

( ) ( )1 22,3, 4,5 1,2,3,4 50x x+ ≤
 

,

( ) ( )1 22,3, 4,5 4,5,6,7 100x x+ ≤
  ,

( ) ( )1 22,3, 4,5 3,4,5,6 90x x+ ≤
 

Now this problem rewrite by introducing the slack 

variables 3x


, 4x


and 5x


as,

( ) ( )
( ) ( ) ( )

1 2

3 4 5

 4,5,6,7 8,9,10,11

0,0,0,0 0,0,0,0 0,0,0,0

Max z x x

x x x

= + +

+ +

 

  

Subject to constraint,

( ) ( ) ( )1 2 32,3, 4,5 1,2,3,4 1,1,1,1 50x x x+ + =
  

( ) ( ) ( )1 2 42,3, 4,5 4,5,6,7 1,1,1,1 100x x x+ + =
  

( ) ( ) ( )1 2 52,3, 4,5 3,4,5,6 1,1,1,1 90x x x+ + =
  

The solution is optimal as 0j jC Z− ≤ for all j. 

Hence the required solution is 1x


= (0,0,0,0) and 2x


=(25,20,50/3,20).

CONCLUSION

In this paper TrFN and their arithmetic operations 
are described[7][8][17][18][19], we have also solved a 

simplex problem using TrFN. The procedure of 
solving simplex problem using TrFN may help us to 
solve many optimization problems. Our approaches 
and computational procedures may be efficient and 
simple to implement for calculation in a Trapezoidal 
fuzzy environment for all fields of engineering and 
science where impreciseness occur.
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