# Some Arithmetic Operations on Trapezoidal Fuzzy Numbers and its Application in Solving Linear Programming Problem by Simplex Algorithm 

Rahul Kar ${ }^{1 *}$ and A.K. Shaw ${ }^{2}$<br>${ }^{1 *}$ Department of Mathematics, Springdale High School, Kalyani, India<br>${ }^{2}$ Department of Mathematics, Regent Education and Research Foundation, Kolkata, India<br>*Corresponding author: rkar997@gmail.com


#### Abstract

The fuzzy logic and fuzzy numbers have been applied in many fields such as operation research, differential equations, fuzzy system reliability, control theory and management sciences etc. The fuzzy logic and fuzzy numbers are widely used in engineering applications also. In this paper we first describe Trapezoidal Fuzzy Number ( $\operatorname{TrFN}$ ) with arithmetic operations and solve a linear programming problem by Trapezoidal Fuzzy Number (TrFN) using simplex algorithm.


Keywords: fuzzy set, Generalized Trapezoidal Fuzzy Number (GTrFN), Trapezoidal Fuzzy Number (TrFN), Simplex algorithm

A fuzzy set in a universe $X$ is defined by membership function that maps $X$ to the interval ${ }^{[0,1]}$ and therefore implies a linear, i.e. total ordering of the ${ }^{[27]}$ elements of $X$, one could argue that this makes them inadequate to deal with incomparable information. A possible solution, however, was already implicit in Zadeh's ${ }^{[29],[30],[31]}$ seminal paper in a footnote; he mentioned that "in a more general setting, the range of the membership function can be taken to be a suitable partially ordered set P." In every sector of our life, ${ }^{[1]}$ ${ }^{[2][3][21][22]}$ there arise several problems which can be formulated mathematically as optimization problem with the goal to maximize the profit or to minimize the cost to formulate the problem mathematically, some constrains or restrictions are to be considered. Linear programming is a one of the most important operation research technique and it is applied in many sector especially related to the optimization problem. Linear programming was first introduced by George Dantzig in 1947. Linear programming
is a technique that is to optimize the use of limited resources. Formulation of fuzzy linear programming was first introduced by Zimmermann. Deldago ${ }^{[23]}$ makes a general model of fuzzy linear programming within the limits of technical coefficients fuzzy and fuzzy right side. Fung and $\mathrm{Hu}^{[28]}$ introduced the linear programming with the technique coefficients based on fuzzy numbers. Verdegay define the dual problem through parametric linear program and shows that the problem of primal - dual fuzzy linear program has the same solution. In this paper we consider the linear programming problem in its standard form to find out its feasible and optimal solution. We use simplex algorithm by trapezoidal fuzzy number ${ }^{[12][13]}$ ${ }^{[14][15][16]}$ to solve the linear programming problem.

## Generalized Fuzzy Number (GFN)

Chen (1985, 1990) represented a Generalized
Trapezoidal Fuzzy Number (GTrFN) $A$ as
$\tilde{A}=\left(a_{1}, b_{1}, c_{1}, d_{1} ; w\right), 0 \prec w \leq 1$ and $a_{1}, b_{1}, c_{1}$ and $d_{1}$ are real numbers. The generalized Fuzzy number $\tilde{A}$ is a fuzzy subset of real line $R$, whose membership function $\mu_{A}$ satisfies the following conditions:

- $a_{1} \leq x \leq b_{1}$ is a continuous mapping from R to the closed interval $[0,1]$
- $\mu_{\tilde{A}}(x)=0,-\infty<x \leq a_{1}$
- $\mu_{\tilde{A}}(x)$ is strictly increasing with constant rate on $a_{1} \leq x \leq b_{1}$
- $\mu_{\tilde{A}}(x)=w$, where $b_{1} \leq x \leq c_{1}$
- $\mu_{\tilde{A}}(x)$ is strictly decreasing with constant rate on $c_{1} \leq x \leq d_{1}$
- $\mu_{\tilde{A}}(x)=0, d_{1} \leq x<\infty$

Definition: A GTrFN $\tilde{A}=\left(a_{1}, b_{1}, c_{1}, d_{1} ; w\right)$ is a fuzzy set of [24],[25],[26] the real line R whose membership function $\mu_{\tilde{A}}(x): R \rightarrow[0, w]$ is defined as,
$\mu_{\tilde{A}}^{w}(x)=\left\{\begin{array}{c}\mu_{L A}^{w}(x)=w\left(\frac{x-a_{1}}{b_{1}-a_{1}}\right) \\ \text { Fora }_{1} \leq x \leq b_{1}, \\ \text { Forb }_{1} \leq x \leq c_{1},\end{array}\right.$,

Where $a_{1}<b_{1}<c_{1}<d_{1}$ and $w \in(0,1]$
Now if $w=1$ the generalized trapezoidal fuzzy
number $\tilde{A}$ is called Trapezoidal Fuzzy Number
(TrFN) and is denoted as $\tilde{A}=\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$

$$
\mu_{\tilde{A}}(x)=\left\{\begin{array}{c}
\mu_{L A}(x)=\left(\frac{x-a_{1}}{b_{1}-a_{1}}\right) \\
\text { Fora }_{1} \leq x \leq b_{1}, \\
\text { Forb }_{1} \leq x \leq c_{1}, \\
\mu_{\overparen{R A}}(x)=\left(\frac{d_{1}-x}{d_{1}-c_{1}}\right) \begin{array}{c}
\text { Forc }_{1} \leq x \leq d_{1}, \\
\text { otherwise }
\end{array} \\
0 \quad
\end{array}\right.
$$

Property 1: If $A_{1}=\left(a_{1}, b_{1}, c_{1}, d_{1}\right) \quad$ and $\tilde{A}_{2}=\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$, then $\tilde{A}_{1} \oplus \tilde{A}_{2}$ is a fuzzy number $\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}, d_{1}+d_{2}\right)$.

Proof: With the transformation $y=x_{1}+x_{2}$, we can find the membership function of fuzzy set
$\tilde{y}=\tilde{A_{1}} \oplus \tilde{A}_{2}$ by $\alpha$-cut method.
Let the left-hand $\alpha$-cut of $\tilde{A}_{1}, 0 \leq \alpha \leq 1$ is $X_{A_{1} L}(\alpha)=a_{1}+\alpha\left(b_{1}-a_{1}\right)$, the right hand is $X_{A_{1} R}(\alpha)=d_{1}+\alpha\left(d_{1}-c_{1}\right)$ i.e.
$x_{1} \in\left\{a_{1}+\alpha\left(b_{1}-a_{1}\right), d_{1}+\alpha\left(d_{1}-c_{1}\right)\right\}$.
The left-hand $\alpha$-cut of $\tilde{A}_{2}, 0 \leq \alpha \leq 1$ is $X_{A_{2} L}(\alpha)=a_{2}+\alpha\left(b_{2}-a_{2}\right)$, the right hand is $X_{A_{2} R}(\alpha)=d_{2}+\alpha\left(d_{2}-c_{2}\right)$ i.e.
$x_{2} \in\left\{a_{2}+\alpha\left(b_{2}-a_{2}\right), d_{2}+\alpha\left(d_{2}-c_{2}\right)\right\}$.
So,
$y\left(=x_{1}+x_{2}\right) \in\left[\begin{array}{l}a_{1}+a_{2}+\alpha\left(\left(b_{1}-a_{1}\right)+\left(b_{2}-a_{2}\right)\right), \\ d_{1}+d_{2}-\alpha\left(\left(d_{1}-c_{1}\right)+\left(d_{2}-c_{2}\right)\right)\end{array}\right]$

Therefore we have,

$$
\begin{align*}
& \alpha=\left(\frac{y-a_{1}-a_{2}}{b_{1}+b_{2}-a_{1}-a_{2}}\right), a_{1}+a_{2} \leq y \leq b_{1}+b_{2}  \tag{2}\\
& \alpha=\left(\frac{d_{1}+d_{2}-y}{d_{1}+d_{2}-c_{1}-c_{2}}\right), c_{1}+c_{2} \leq y \leq d_{1}+d_{2} \tag{3}
\end{align*}
$$

From (2) and (3) we have the membership function,
of $\tilde{y}=A_{1} \oplus \tilde{A}_{2}$

$$
\mu_{\tilde{y}}(y)=\left\{\begin{array}{cc}
\frac{y-a_{1}-a_{2}}{b_{1}+b_{2}-a_{1}-a_{2}} & a_{1}+a_{2} \leq x \leq b_{1}+b_{2} \\
1 & b_{1}+b_{2} \leq x \leq c_{1}+c_{2} \\
\frac{d_{1}+d_{2}-y}{d_{1}+d_{2}-c_{1}-c_{2}} & c_{1}+c_{2} \leq x \leq d_{1}+d_{2} \\
0 & \text { otherwise }
\end{array}\right.
$$

Thus we have,

$$
\tilde{A}_{1} \oplus \tilde{A}_{2}=\left(a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}, d_{1}+d_{2}\right)
$$

If we consider for n Trapezoidal Fuzzy Number,

$$
\begin{gathered}
\tilde{A}_{1}=\left(a_{1}, b_{1}, c_{1}, d_{1}\right), \tilde{A}_{2}=\left(a_{2}, b_{2}, c_{2}, d_{2}\right), \\
\ldots \ldots \ldots \ldots \ldots, \ldots, \tilde{A}_{n}=\left(a_{n}, b_{n}, c_{n}, d_{n}\right)
\end{gathered}
$$

then $\tilde{A}_{1} \oplus \tilde{A}_{2} \oplus \ldots \tilde{\oplus} A_{n}=\left(\sum_{i=1}^{n} a_{i}, \sum_{i=1}^{n} b_{i}, \sum_{i=1}^{n} c_{i}, \sum_{i=1}^{n} d_{i}\right)$
Property 2: If $\quad \tilde{A}_{1}=\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ and $\tilde{A}_{2}=\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ then $\tilde{X}_{1} \Theta \tilde{X}_{2}$ is a fuzzy number
$\left(a_{1}-a_{2}, b_{1}-b_{2}, c_{1}-c_{2}, d_{1}-d_{2}\right)$
Proof: With the transformation $y=x_{1}-x_{2}$, we can find the membership function of fuzzy set $\tilde{y}=A_{1} \Theta A_{2}$ by $\alpha$-cut method. Let the left-hand $\alpha$ -cut of $\tilde{X}_{1}, 0 \leq \alpha \leq 1$ is $X_{A_{1} L}(\alpha)=a_{1}+\alpha\left(b_{1}-a_{1}\right)$ ,the right hand is $X_{A_{1} R}(\alpha)=d_{1}+\alpha\left(d_{1}-c_{1}\right)$ i.e. $x_{1} \in\left\{a_{1}+\alpha\left(b_{1}-a_{1}\right), d_{1}+\alpha\left(d_{1}-c_{1}\right)\right\}$.

The left-hand $\alpha$-cut of $A_{2}, 0 \leq \alpha \leq 1$ is $\quad X_{A_{2} L}(\alpha)=a_{2}+\alpha\left(b_{2}-a_{2}\right)$, the right hand is $\quad X_{A_{2} R}(\alpha)=d_{2}+\alpha\left(d_{2}-c_{2}\right)$ i.e. $x_{2} \in\left\{a_{2}+\alpha\left(b_{2}-a_{2}\right), d_{2}+\alpha\left(d_{2}-c_{2}\right)\right\}$. So,
$y\left(=x_{1}-x_{2}\right) \in\left[\begin{array}{l}a_{1}-d_{2}+\alpha\left(\left(b_{1}-a_{1}\right)+\left(d_{2}-c_{2}\right)\right), \\ d_{1}-a_{2}-\alpha\left(\left(d_{1}-c_{1}\right)+\left(b_{2}-a_{2}\right)\right)\end{array}\right]$

Therefore we have,

$$
\begin{align*}
& \alpha=\left(\frac{y-a_{1}+d_{2}}{b_{1}+d_{2}-a_{1}-c_{2}}\right), a_{1}-a_{2} \leq y \leq b_{1}-b_{2}  \tag{6}\\
& \alpha=\left(\frac{d_{1}-a_{2}-y}{b_{2}+d_{1}-c_{1}-a_{2}}\right), c_{1}-c_{2} \leq y \leq d_{1}-d_{2} \tag{7}
\end{align*}
$$

From (6) and (7) we have the membership function of $\tilde{y}=\tilde{A_{1} \Theta} \tilde{A}_{2}$

As $\tilde{A}_{1} \Theta \tilde{A}_{2}=\left(a_{1}-a_{2}, b_{1}-b_{2}, c_{1}-c_{2}, d_{1}-d_{2}\right)$
Thus we have,
$\tilde{A}_{1} \Theta \tilde{A}_{2}=\left(a_{1}-a_{2}, b_{1}-b_{2}, c_{1}-c_{2}, d_{1}-d_{2}\right)$

Property 3: If $\quad \tilde{X}_{1}=\left(a_{1}, b_{1}, c_{1}, d_{1}\right)$ and $\tilde{X}_{2}=\left(a_{2}, b_{2}, c_{2}, d_{2}\right)$ then $\tilde{X}_{1} \otimes \tilde{X}_{2}$ is a fuzzy number $\left(a_{1} a_{2}, b_{1} b_{2}, c_{1} c_{2}, d_{1} d_{2}\right)$

Proof: With the transformation $y=x_{1} x_{2}$, we can find the membership function of fuzzy set $\tilde{y}=A_{1} \Theta A_{2}$ by $\alpha$-cut method. Let the left-hand $\alpha$ -cut of $\quad \tilde{X}_{1}, 0 \leq \alpha \leq 1$ is $\quad X_{A_{1} L}(\alpha)=a_{1}+\alpha\left(b_{1}-a_{1}\right)$ , the right hand is $X_{A_{1} R}(\alpha)=d_{1}+\alpha\left(d_{1}-c_{1}\right)$ i.e. $x_{1} \in\left\{a_{1}+\alpha\left(b_{1}-a_{1}\right), d_{1}+\alpha\left(d_{1}-c_{1}\right)\right\}$.

The left-hand $\quad \alpha$-cut of $\quad \tilde{A}_{2}, 0 \leq \alpha \leq 1$ is $\quad X_{A_{2} L}(\alpha)=a_{2}+\alpha\left(b_{2}-a_{2}\right)$, the right hand $\quad$ is $\quad X_{A_{2} R}(\alpha)=d_{2}+\alpha\left(d_{2}-c_{2}\right)$ i.e. $x_{2} \in\left\{a_{2}+\alpha\left(b_{2}-a_{2}\right), d_{2}+\alpha\left(d_{2}-c_{2}\right)\right\}$ $y\left(=x_{1} x_{2}\right) \in$
$\left[\begin{array}{l}a_{1} a_{2}+\alpha^{2}\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)+\alpha\left(a_{1}\left(b_{2}-a_{2}\right)+a_{2}\left(b_{1}-a_{1}\right)\right), d_{1} d_{2}+\alpha^{2} \\ \left(d_{1}-c_{1}\right)\left(d_{2}-c_{2}\right)-\alpha\left(d_{1}\left(d_{2}-c_{2}\right)+d_{2}\left(d_{1}-c_{1}\right)\right)\end{array}\right]$

Therefore we have,

$$
\begin{equation*}
\alpha=\frac{-B+\sqrt{B^{2}-4 A C}}{2 A}, a_{1} a_{2} \leq y \leq b_{1} b_{2} \tag{9}
\end{equation*}
$$

And $\alpha=\frac{-B^{\prime}-\sqrt{B^{\prime 2}-4 A^{\prime} C^{\prime}}}{2 A^{\prime}}, c_{1} c_{2} \leq y \leq d_{1} d_{2}$

From (9) and (10) we have the membership function of $y=\tilde{X}_{1} \otimes \tilde{X}_{2} \quad$ as

$$
\mu_{\tilde{y}}(y)=\left\{\begin{array}{cc}
\frac{-B+\sqrt{B^{2}-4 A C}}{2 A} & a_{1} a_{2} \leq y \leq b_{1} b_{2}, \\
1 & b_{1} b_{2} \leq y \leq c_{1} c_{2} \\
\frac{-B^{\prime}-\sqrt{B^{\prime 2}-4 A^{\prime} C^{\prime}}}{2 A_{1}^{\prime}} c_{1} c_{2} \leq x \leq d_{1} d_{2} \\
0 & \text { otherwise } \\
0 &
\end{array}\right.
$$

Where,

$$
\begin{aligned}
& A=\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right), B=a_{1}\left(b_{1}-a_{1}\right)+a_{2}\left(b_{2}-a_{2}\right) \\
& , C=a_{1} a_{2}-y, A^{\prime}=\left(d_{1}-c_{1}\right)\left(d_{2}-c_{2}\right), \\
& =\left[a_{1} a_{2}+\alpha^{2}\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)+\alpha\left(a_{1}\left(b_{2}-a_{2}\right)+a_{2}\left(b_{1}-a_{1}\right)\right)\right. \\
& \left.d_{1} d_{2}+\alpha^{2}\left(d_{1}-c_{1}\right)\left(d_{2}-c_{2}\right)-\alpha\left(d_{1}\left(d_{2}-c_{2}\right)+d_{2}\left(d_{1}-c_{1}\right)\right)\right]
\end{aligned}
$$

and $C^{\prime}=d_{1} d_{2}-y$
Now,

$$
\begin{aligned}
& \tilde{A}_{1}=\left[a_{1}+\alpha\left(b_{1}-a_{1}\right), d_{1}-\alpha\left(d_{1}-c_{1}\right)\right] \\
& \tilde{A}_{2}=\left[a_{2}+\alpha\left(b_{2}-a_{2}\right), d_{2}-\alpha\left(d_{2}-c_{2}\right)\right] \\
& \tilde{A}_{1} \otimes \tilde{A}_{2}=\left[a_{1}+\alpha\left(b_{1}-a_{1}\right), d_{1}-\alpha\left(d_{1}-c_{1}\right)\right] \otimes \\
& {\left[a_{2}+\alpha\left(b_{2}-a_{2}\right), d_{2}-\alpha\left(d_{2}-c_{2}\right)\right]} \\
& =\left[a_{1} a_{2}+\alpha^{2}\left(b_{1}-a_{1}\right)\left(b_{2}-a_{2}\right)+\alpha\left(a_{1}\left(b_{2}-a_{2}\right)+a_{2}\left(b_{1}-a_{1}\right)\right)\right. \\
& \left.d_{1} d_{2}+\alpha^{2}\left(d_{1}-c_{1}\right)\left(d_{2}-c_{2}\right)-\alpha\left(d_{1}\left(d_{2}-c_{2}\right)+d_{2}\left(d_{1}-c_{1}\right)\right)\right]
\end{aligned}
$$

## Property 4:

If $\tilde{Y}_{1}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ and $v=k y, k>0$ then $\tilde{v}=k \tilde{y}$ is a fuzzy number $\left(k y_{1}, k y_{2}, k y_{3}, k y_{4}\right)$

If $\tilde{Y}_{1}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ and $v=k y, k>0$ then $\tilde{v} \quad k \tilde{y}$ is a fuzzy number $\left(k y_{4}, k y_{3}, k y_{2}, k y_{1}\right)$

Proof: When $k>0$, with the transformation $y=k u$, we can find the membership function of fuzzy set $\tilde{y}=k \tilde{U}$ by $\alpha$-cut method. Let the left-hand $\alpha$-cut of $\tilde{U}, 0 \leq \alpha \leq 1$ is, the right-hand $\quad$ is $\quad X_{U R}(\alpha)=u_{4}-\alpha\left(u_{4}-u_{3}\right) \quad$ i.e. $u \in\left[u_{1}+\alpha\left(u_{2}-u_{1}\right), u_{4}-\alpha\left(u_{4}-u_{3}\right)\right]$.
So,
$y(=k u) \in\left[k u_{1}+\alpha\left(k u_{2}-k u_{1}\right), k u_{4}-\alpha\left(k u_{4}-k u_{3}\right)\right]$
Therefore, we have,
$\alpha=\frac{y-k u_{1}}{k u_{2}-k u_{1}}, k u_{1} \leq y \leq k u_{2}$
And $\alpha=\frac{k u_{4}-y}{k u_{4}-k u_{3}}, k u_{3} \leq y \leq k u_{4}$
From (12) and (13) we have the membership function
of $y=k u$ is

$$
\mu_{\tilde{y}}(y)=\left\{\begin{array}{cc}
\frac{y-k u_{1}}{k u_{2}-k u_{1}}, & k u_{1} \leq y \leq k u_{2}  \tag{16}\\
1 & k u_{2} \leq y \leq k u_{3} \\
\frac{k u_{4}-y}{k u_{4}-k u_{3}}, & k u_{3} \leq y \leq k u_{4} \\
0 & \text { otherwise }
\end{array}\right.
$$

i.e. $x_{2} \in\left\{a_{2}+\alpha\left(b_{2}-a_{2}\right), d_{2}+\alpha\left(d_{2}-c_{2}\right)\right\}$.

So,
$y\left(=x_{1} / x_{2}\right) \in\left[\frac{a_{1}+\alpha\left(b_{1}-a_{1}\right)}{a_{2}+\alpha\left(b_{2}-a_{2}\right)}, \frac{d_{1}-\alpha\left(d_{1}-c_{1}\right)}{d_{2}-\alpha\left(d_{2}-c_{2}\right)}\right]$,

Therefore we have,

$$
\begin{align*}
& \alpha=\left(\frac{a_{1}-a_{2} y}{y\left(b_{2}-a_{2}\right)-\left(b_{1}-a_{1}\right)}\right), a_{1} / a_{2} \leq y \leq b_{1} / b_{2}  \tag{17}\\
& \alpha=\left(\frac{d_{1}-d_{2} y}{\left(d_{1}-c_{1}\right)-y\left(d_{2}-c_{2}\right)}\right), c_{1} / c_{2} \leq y \leq d_{1} / d_{2} \tag{18}
\end{align*}
$$

From (17) and (18) we have the membership function

$$
\begin{aligned}
& \text { of } \tilde{y}=\tilde{A_{1}} \varnothing \tilde{A_{2}} \text { as } \\
& \mu_{\tilde{y}}(y)=\left\{\begin{array}{cc}
\left(\frac{a_{1}-a_{2} y}{y\left(b_{2}-a_{2}\right)-\left(b_{1}-a_{1}\right)}\right), & a_{1} / a_{2} \leq y \leq b_{1} / b_{2}, \\
& b_{1} / b_{2} \leq y \leq c_{1} / c_{2} \\
\left(\frac{d_{1}-d_{2} y}{\left(d_{1}-c_{1}\right)-y\left(d_{2}-c_{2}\right)}\right), & \begin{array}{c}
c_{1} / c_{2} \leq y \leq d_{1} / d_{2} \\
0
\end{array} \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Thus we have,

$$
\tilde{A}_{1} \varnothing \tilde{A}_{2}=\left(a_{1} / a_{2}, b_{1} / b_{2}, c_{1} / c_{2}, d_{1} / d_{2}\right)
$$

Construction and solution procedure of a LPP by Trapezoidal Fuzzy Number (TrFN) using simplex algorithm .: ${ }^{[7 / 181919[10 \mid[11]}$

## Consider the following steps

1. Make a change of variables and normalize the sign of the independent terms.
A change is made to the variable naming, establishing the following correspondences: x becomes $x_{1}$ and y becomes $x_{2}$.
As the independent terms of all restrictions are positive no further action is required. Otherwise there would be multiplied by " -1 " on both sides of the inequality (noting that this operation also affects the type of restriction).

## 2. Normalize restrictions

The inequalities become equations by adding slack, surplus and artificial variables as the following table:

| Inequality type | Variable that appears |
| :---: | :---: |
| $\geq$ | - surplus + artificial |
| $=$ | + artificial |
| $\leq$ | + slack |

In this case, a slack variable $\left(x_{3}, x_{4}\right.$ and $\left.x_{5}\right)$ is introduced in each of the restrictions of $\leq$ type, to
convert them into equalities, resulting the system of linear equations:

$$
\begin{aligned}
& (2,3,4,5) \tilde{x}_{1}+(1,2,3,4) \tilde{x}_{2}+(1,1,1,1) \tilde{x}_{3}=50 \\
& (2,3,4,5) \tilde{x_{1}}+(4,5,6,7) \tilde{x_{2}}+(1,1,1,1) \tilde{x}_{4}=100 \\
& (2,3,4,5) \tilde{x}_{1}+(3,4,5,6) \tilde{x_{2}}+(1,1,1,1) \tilde{x}_{5}=90
\end{aligned}
$$

## 3. Match the objective function to zero.

$$
\begin{aligned}
& \operatorname{Max} \tilde{z}=(4,5,6,7) \tilde{x}_{1}+(8,9,10,11) \tilde{x}_{2}+(0,0,0,0) \\
& \tilde{x}_{3}+(0,0,0,0) \tilde{x}_{4}+(0,0,0,0) \tilde{x}_{5}
\end{aligned}
$$

## 4. Write the initial tableau of Simplex method

The initial tableau of Simplex method consists of all the coefficients of the decision variables of the original problem and the slack, surplus and artificial variables added in second step and constraints (in rows). The $C_{b}$ column contains the coefficients of the variables that are in the base. The first row consists of the objective function coefficients, while the last row contains the objective function value and reduced costs $\mathrm{C}_{\mathrm{j}}-\mathrm{Z}_{\mathrm{j}}$. The last row is calculated as follows: $Z_{j}=\sum C_{b_{i}} \times X_{i}$ for $i=1 \ldots . . m$. Although this is the first tableau of the Simplex method and all $C_{b}$ are null, so the calculation can simplified.

## 5. Stopping condition

If the objective is to maximize, when in the last row there is no negative value between discounted costs the stop condition is reached. In that case, the algorithm reaches the end as there is no improvement possibility. The $Z_{j}$ value is the optimal solution of the problem. Another possible scenario is all values are negative or zero in the input variable column of the base. This indicates that the problem is not limited and the solution will always be improved. Otherwise, the following steps are executed iteratively.

Table AU: 1

|  | $C_{i}$ | $(\mathbf{4}, \mathbf{5}, 6,7)$ | $\mathbf{( 8 , 9 , 1 0 , 1 1 )}$ | $\mathbf{( 0 , 0 , 0 , 0 )}$ | $\mathbf{( 0 , 0 , 0 , 0 )}$ | $\mathbf{( 0 , 0 , 0 , 0 )}$ | Solution | Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $B V$ | $\tilde{x}_{1}$ | $\tilde{x}_{2}$ | $\tilde{x}_{3}$ | $\tilde{x}_{4}$ | $\tilde{x}_{5}$ |  |  |
| $(0,0,0,0)$ | $\tilde{x}_{3}$ | $(2,3,4,5)$ | $(1,2,3,4)$ | $(1,1,1,1)$ | $(0,0,0,0)$ | $(0,0,0,0)$ | 50 | $(50,25,50 / 3,25 / 2)$ |
| $(0,0,0,0)$ | $\tilde{x}_{4}$ | $(2,3,4,5)$ | $(4,5,6,7)$ | $(0,0,0,0)$ | $(1,1,1,1)$ | $(0,0,0,0)$ | 100 | $(25,20,50 / 3,20)$ |
| $(0,0,0,0)$ | $\tilde{x}_{5}$ | $(2,3,4,5)$ | $(3,4,5,6)$ | $(0,0,0,0)$ | $(0,0,0,0)$ | $(1,1,1,1)$ | 90 | $(30,45 / 2,18,15)$ |
|  | $Z_{j}$ | $(0,0,0,0)$ | $(0,0,0,0)$ | $(0,0,0,0)$ | $(0,0,0,0)$ | $(0,0,0,0)$ |  |  |
|  | $C_{i}-z_{j}$ | $(4,5,6,7)$ | $(8,9,10,11)$ | $(0,0,0,0)$ | $(0,0,0,0)$ | $(0,0,0,0)$ |  |  |

Table AU: 2

| (0,0,0,0) | $\tilde{x}_{3}$ | $\begin{gathered} (3 / 2,9 / 5,2, \\ 15 / 17) \end{gathered}$ | (0,0,0,0) | (1,1,1,1) | $\begin{gathered} (-1 / 4,-2 / 5,-1 / 2,- \\ 4 / 7) \end{gathered}$ | ( 0,0,0,0) | $(25,10,0,-50 / 7)$ | $\begin{gathered} (50,25,50 / 3, \\ 25 / 2) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (8, 9, 10, 11) | $\tilde{x}_{2}$ | $\begin{gathered} (1 / 2,3 / 5,2 / 3 \\ 5 / 7) \end{gathered}$ | (1,1,1,1) | (0,0,0,0) | $\begin{gathered} (1 / 7,1 / 6,1 / 5 \\ 1 / 4) \end{gathered}$ | (0,0,0,0) | (25, 20, 50/3,20) | $\begin{gathered} (25,20,50 / 3 \\ 20) \end{gathered}$ |
| (0,0,0,0) | $\tilde{x}_{5}$ | $\begin{gathered} (1 / 2,3 / 5,2 / 3 \\ 5 / 7) \end{gathered}$ | (0,0,0,0) | (0,0,0,0) | $\begin{gathered} (-3 / 4,-4 / 5,-5 / 6 \\ -6 / 7) \end{gathered}$ | (1,1,1,1) | $(5,10,20 / 3,30 / 7)$ | $\begin{gathered} (30,45 / 2,18 \\ 15) \end{gathered}$ |
|  | $Z_{j}$ | $\begin{gathered} (4,27 / 5,20 / 3 \\ 55 / 7) \end{gathered}$ | (8,9,10,11) | (0,0,0,0) | $\begin{gathered} (8 / 7,9 / 6,10 / 5 \\ 11 / 4) \end{gathered}$ | (0,0,0,0) |  |  |
|  | $C_{j}-z_{j}$ | $\begin{gathered} (0,-2 / 5,-2 / 3, \\ -6 / 7) \end{gathered}$ | (0,0,0,0) | (0,0,0,0) | $\begin{gathered} (-8 / 7,-9 / 6 \\ -10 / 5,-11 / 4) \end{gathered}$ | (0,0,0,0) |  |  |

## 6. Choice of the input and output base variables

First, input base variable is determined. For this, column whose value in $Z_{j}$ row greater than the all positive value is chosen. In this example it would be the variable $X_{2}$. If there are two or more equal coefficients satisfying the above condition (case of tie), then choice the basic variable. The column of the input base variable is called pivot column . Once obtained the input base variable, the output base variable is determined.

The decision is based on a simple calculation: divide each independent term between the corresponding value in the pivot column, if both values are strictly positive (greater than zero). The row whose result is minimum score is chosen.

If there is any value less than or equal to zero, this quotient will not be performed. If all values of the pivot column satisfy this condition, the stop condition
will be reached and the problem has an unbounded solution. The term of the pivot column which led to the lesser positive quotient in the previous division indicates the row of the slack variable leaving the base. In this example, it is $X_{4}$. This row is called pivot row.

If two or more quotients meet the choosing condition (case of tie), other than that basic variable is chosen (wherever possible).

The intersection of pivot column and pivot row marks the pivot value.

## 7. Update tableau

The new coefficients of the tableau are calculated as follows:
In the pivot row each new value is calculated as:
New value $=$ Previous value / Pivot
$\mathcal{D}^{\text {Kar and Shaw }}$

In the other rows each new value is calculated as:
New value $=$ Previous value - (Previous value in pivot column * New value in pivot row)

So, the pivot is normalized (its value becomes 1).
The tableau corresponding to this second iteration is describe in table 2.

## 8. End of algorithm

It is noted that in the last row, all the coefficients are $\leq 0$; so the stop condition is fulfilled.

The solution is optimal as $C_{j}-Z_{j} \leq 0$ for all j . Hence the required solution is $x 1=(0,0,0,0)$ and $\times 2=$


Fig. 1: simplex algorithm (25,20,50/3,20).

Table AU: 3

|  | $C_{j}$ | $(4,5,6,7)$ | $(8,9,10,11)$ | (0,0,0,0) | (0,0,0,0) | (0,0,0,0) | Solution | Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BV | $\tilde{x}_{1}$ | $\tilde{x}_{2}$ | $\tilde{x}_{3}$ | $\tilde{x}_{4}$ | $\tilde{x}_{5}$ |  |  |
| (0,0,0,0) | $\tilde{x}_{3}$ | (2,3,4,5) | (1,2,3,4) | (1,1,1,1) | $(0,0,0,0)$ | $(0,0,0,0)$ | 50 | $\begin{gathered} (50,25,50 / 3, \\ 25 / 2) \end{gathered}$ |
| $(0,0,0,0)$ | $\tilde{x}_{4}$ | (2,3,4,5) | $(4,5,6,7)$ | $(0,0,0,0)$ | (1,1,1,1) | $(0,0,0,0)$ | 100 | $\begin{gathered} (25,20,50 / 3, \\ 20) \end{gathered}$ |
| $(0,0,0,0)$ | $\tilde{x}_{5}$ | (2,3,4,5) | (3,4,5,6) | $(0,0,0,0)$ | $(0,0,0,0)$ | (1,1,1,1) | 90 | $\begin{gathered} (30,45 / 2, \\ 18,15) \end{gathered}$ |
|  | $Z_{j}$ | $(0,0,0,0)$ | $(0,0,0,0)$ | $(0,0,0,0)$ | $(0,0,0,0)$ | $(0,0,0,0)$ |  |  |
|  | $C_{i}-z_{j}$ | $(4,5,6,7)$ | $(8,9,10,11)$ | $(0,0,0,0)$ | ( $0,0,0,0$ ) | $(0,0,0,0)$ |  |  |
|  | $\tilde{x}_{3}$ | (3/2, 9/5, 2, 15/17) | (0,0,0,0) | (1,1,1,1) | $\begin{gathered} (-1 / 4,-2 / 5,-1 / 2,- \\ 4 / 7) \end{gathered}$ | ( 0,0,0,0) | $\begin{gathered} (25,10,0,- \\ 50 / 7) \end{gathered}$ | $\begin{gathered} (50,25,50 / 3, \\ 25 / 2) \end{gathered}$ |
|  | $\tilde{x}_{2}$ | (1/2, 3/5, 2/3, 5/7) | (1,1,1,1) | $(0,0,0,0)$ | $\begin{gathered} (1 / 7,1 / 6, \\ 1 / 5,1 / 4) \end{gathered}$ | $(0,0,0,0)$ | $\begin{gathered} (25,20,50 / 3, \\ 20) \end{gathered}$ | $\begin{gathered} (25,20,50 / 3, \\ 20) \end{gathered}$ |
|  | $\tilde{x}_{5}$ | (1/2, 3/5, 2/3, 5/7) | $(0,0,0,0)$ | $(0,0,0,0)$ | $\begin{aligned} & (-3 / 4,-4 / 5, \\ & -5 / 6,-6 / 7) \end{aligned}$ | (1,1,1,1) | $\begin{gathered} (5,10,20 / 3, \\ 30 / 7) \end{gathered}$ | $\begin{gathered} (30,45 / 2,18 \\ 15) \end{gathered}$ |
|  | $Z_{j}$ | $\begin{gathered} (4,27 / 5,20 / 3, \\ 55 / 7) \end{gathered}$ | (8,9,10,11) | $(0,0,0,0)$ | $\begin{gathered} \hline(8 / 7,9 / 6,10 / 5, \\ 11 / 4) \end{gathered}$ | $(0,0,0,0)$ |  |  |
|  | $C_{i}-z_{j}$ | (0, -2/5, -2/3, -6/7) | (0,0,0,0) | $(0,0,0,0)$ | $\begin{gathered} (-8 / 7,-9 / 6, \\ -10 / 5,-11 / 4) \end{gathered}$ | $(0,0,0,0)$ |  |  |

## Application

In this paper we are going to solve a linear programming problem by trapezoidal fuzzy number using simplex algorithm. Our problem is described below:

$$
\operatorname{Max} \tilde{z}=(4,5,6,7) \tilde{x_{1}}+(8,9,10,11) \tilde{x_{2}}
$$

Subject to constraint,
$(2,3,4,5) \tilde{x_{1}}+(1,2,3,4) \tilde{x_{2}} \leq 50$,
$(2,3,4,5) \tilde{x}_{1}+(4,5,6,7) \tilde{x_{2}} \leq 100$,
$(2,3,4,5) \tilde{x}_{1}+(3,4,5,6) \tilde{x}_{2} \leq 90$

Now this problem rewrite by introducing the slack
variables $x_{3}, x_{4}$ and $x_{5}$ as,
$\operatorname{Max} \tilde{z}=(4,5,6,7) \tilde{x}_{1}+(8,9,10,11) \tilde{x}_{2}+$
$(0,0,0,0) \tilde{x}_{3}+(0,0,0,0) \tilde{x}_{4}+(0,0,0,0) \tilde{x}_{5}$
Subject to constraint,
$(2,3,4,5) \tilde{x_{1}}+(1,2,3,4) \tilde{x_{2}}+(1,1,1,1) \tilde{x_{3}}=50$
$(2,3,4,5) \tilde{x}_{1}+(4,5,6,7) \tilde{x}_{2}+(1,1,1,1) \tilde{x}_{4}=100$
$(2,3,4,5) \tilde{x}_{1}+(3,4,5,6) \tilde{x}_{2}+(1,1,1,1) \tilde{x}_{5}=90$

The solution is optimal as $C_{j}-Z_{j} \leq 0$ for all j .
Hence the required solution is $x_{1}=(0,0,0,0)$ and $x_{2}$ $=(25,20,50 / 3,20)$.

## CONCLUSION

In this paper $\operatorname{TrFN}$ and their arithmetic operations are described ${ }^{[7][8][177][18[19]}$, we have also solved a
simplex problem using TrFN. The procedure of solving simplex problem using TrFN may help us to solve many optimization problems. Our approaches and computational procedures may be efficient and simple to implement for calculation in a Trapezoidal fuzzy environment for all fields of engineering and science where impreciseness occur.

## REFERENCES

Alefeld, G. \& Herzberger, J. 1983. Introduction to Interval Computation, Academic Press, New York.
Cheng, C.H. \& Mon. D.L. 1993. Fuzzy system reliability analysis by interval of confidence, Fuzzy Sets and Systems, 56: 29-35.
Cai, K.Y., Wen, C.Y. \& Zhang, M.L. 1991. Fuzzy reliability modeling of gracefully degradable computing systems, Reliability Engineering and System Safety, 33: 141-157.
Cai, K.Y., Wen, C.Y. \& Zhang. M.L. 1991. Survival index for CCNs: a measure of fuzzy reliability computing systems, Reliability Engineering and System Safety, 33: 141-157.
Cai, K.Y. and Wen, C.Y. 1990. Streeting-lighting lamps replacement: a fuzzy viewpoint, Fuzzy Sets and System, 37: 161-172.

Chen, S.M. and Jong, W.T. 1996. Analyzing fuzzy system reliability using interval of confidence, International Journal of Information Management and Engineering, 2: 16-23.
Chen, S.H. 1985. Operations on fuzzy numbers with function principle, Tamkang Journal of Management Sciences, 6(1): 13 -26 .
Dubois, D. \& H. Prade, H. 1978. Operations of Fuzzy Number's, Int. J. Systems Sci., 9(6): 613-626.
Dubois, D. \& H. Prade, H. 1980. Fuzzy sets and systems, Theory and Applications, Academic Press, New York.
Dwyer, P.S. 1951. Linear Computation, New York.
Dwyer, P.S. 1964. Matrix Inversion with the square root method, Technometrices, 6(2).
Hansen, E.R. 1965. Interval Arithmetic in Matrix computations, Part I, Journal of SIAM series B, 2(2).
Hansen, E.R. \& Smith, R.R. 1967. Interval Arithmetic in Matrix computation Part II, SIAM Journal of Numerical Analysis, 4: 1-9.

Hansen, E.R. 1969. On the solutions of linear algebraic equations with interval coefficients, Linear Algebra Appl., 2: 153-165.

Hansen, E.R. 1992. Global Optimization Using Interval Analysis, Marcel Dekker, Inc., New York.
Kaufmann, A. 1975. Introduction to theory of Fuzzy Subsets, Vol. I, Academic Press, New York.

Kaufmann, A. 1985. and Gupta, M.M., Introduction to Fuzzy Arithmetic, Van Nostrand Reinhold, New York.
Lodwick, W.A. \& Jamison, K.D. 1997. Interval methods and fuzzy optimization, International Journal of Uncertainty, Fuzziness and Knowledge- Based Systems, 5: 239-249.
Moore, R.E. 1979. Methods and Applications of Interval Analysis, SIAM, Philadelphia.
Mahapatra, G.S. and Roy. T.K. 2009. Reliability Evaluation using triangular intuitionistic Fuzzy Numbers Arithemmetic Operations, Proceedings of World Academy of Science, Engineering and Technology, 38: 587-595.
Mon. D.L. and Cheng. C.H. 1994. Fuzzy system reliability analysis for components with different membership functions, Fuzzy Sets and Systems, 64: 145-157.
Deldago, M., Verdegay, J.L., Vila, M.A. 1989. A General Model for Fuzzy Linear Programming, Fuzzy Set and System, 29: 21-29.
Shaw, A.K. \& Roy, T.K. 2015. Fuzzy Reliability Optimization based on Fuzzy Geometric Programming Method using different operators, The Journal of Fuzzy Mathematics (USA) 23(1): 79-88.
Shaw, A.K. and Roy, T.K. 2015. Reliability Analysis of the System with Imprecise Constant Failure Rate of the Components, IAPQR Transaction, 40(1).

Shaw,A.K. \& Roy, T.K.2011.Generalized Trapezoidal Triangular Intuitionistic Fuzzy Number and its application on reliability evaluation, Fuzzy Number with its arithmetic Operations and its application in fuzzy system reliability analysis, International Journal of Pure Applied Science and Technology, 5(2): 60-76.
Shaw, A.K. \& Roy, T.K. 2012. Some arithmetic operations on Triangular Intuitionistic Fuzzy Number and its application on reliability evaluation, International Journal of Fuzzy Mathematics and System (IJFMS), 2(4): 363-382.
Fang, S.C., Hu, C.F., Wu, S.Y. \& Wang, H.F. 1999. Linear Programming with Fuzzy Coefficients in Constraint, Computers and Mathematics with Applications, 37: 63-76.
Zadeh, L.A. 1975. The concept of a Linguistic variable and its applications to approximate reasoning - parts I, II and III", Inform. Sci., 8: 199-249; 81975 301-357; 9(1976) 43-80.
Zadeh, L.A. 1965. Fuzzy sets, Information and Control, 8: 339353.

Zadeh, L.A. 1978. Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems, 1: 3-28, 1978.

