

DOI Number 10.5958/2277-940X.2014.00081.3

Epigenetic Reprogramming of Adult Mammalian Cells into Induced Pluripotent Stem Cells (iPSCs) -An Emerging Paradigm

Raj Kumar Mongre¹, Simrinder Singh Sodhi¹, Mrinmoy Ghosh¹, Jeong Hyun Kim¹, Nameun Kim¹, Neelesh Sharma², Sung Jong Oh¹, Sung Woo Kim³ and Dong Kee Jeong^{1*}

 ¹Laboratory of Animal Genetic Engineering and Stem Cell Biology, Department of Animal Biotechnology, Faculty of Biotechnology, Jeju National University, Jeju, REPUBLIC OF KOREA
²Division of Veterinary Medicine, Faculty of Veterinary Science & Animal Husbandry, Sher-e-kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu, INDIA
³Animal Genetic Resource Station, National Institute of Animal Science, Namwon, REPUBLIC OF KOREA
* Corresponding author: DK Jeong; Email: dkjeong@jejunu.ac.kr

Received: 01 May 2014; Accepted: 23 May 2014

ABSTRACT

The field of stem-cell biology has been catapulted forward by the startling development of reprogramming technology. The ability to restore pluripotency to somatic cells through the ectopic co-expression of reprogramming factors has created powerful new opportunities for modelling human diseases and offers hope for personalized regenerative cell therapies. Worldwide increases in life expectancy have been paralleled by a greater prevalence of chronic and ageassociated disorders, particularly of the cardiovascular, neural and metabolic systems. Patient-specific induced pluripotent stem (iPS) cells are an emerging paradigm that may address this. Reprogrammed somatic cells from patients are already applied in disease modelling, drug testing and drug discovery, thus enabling researchers to undertake studies for treating diseases 'in a dish', which was previously inconceivable. Although there are currently several strategies to deliver reprogramming factors to induce iPSCs. In this study we have focus is on utilize plasmid vector to reprogramm because of convenience, reasonable efficiency and zero genes fingerprints and xeno free production of iPSCs. This virus-free technique reduces the safety concern for iPScell generation and application, and provides a source of cells for the investigation of the mechanisms underlying reprogramming and pluripotency.

Keywords: induced pluripotent stem cells, Organs-on-Chips, *OSKML*, Markers of pluripotency.

During the last few decades, the use of induced pluripotent stem cells (iPSCs) has gained attention among the researchers all around the world. It is a potentially important resource for many applications, ranging from basic research to drug discovery. PSCs can be an enormous cell source for *in vitro* model systems of development (Imamura *et al.*, 2012). The iPSCs from patient's somatic cells could be a useful source for drug discovery and cell transplantation therapies. Reprogramming of somatic cells (SCs) into PSCs has been reported by introducing a combination of several transcription factors (Oct3/4, Sox2, Klf4 and c-Myc) (Takahashi and Yamanaka, 2006; Okita *et al.*, 2010; Stadtfeld and Hochedlinger, 2010). iPSC has generated a renewed interest in stem cell research. It promises to overcome several key issues, including the ethical concerns of using human embryonic stem cells (hESCs) and the difficulty in obtaining large numbers of adult stem cells (Anastasia *et al.*, 2010).

In 1962, generation of tadpoles from unfertilized eggs that had received a nucleus from the intestinal cells of adult frogs revolutionized the whole world (Gurdon, 1962). Almost, three decades later, Ian Wilmut et al., (1997) reported the birth of Dolly, the first mammal generated by somatic cloning of mammary epithelial cells. These successes during the cloning of somatic cells demonstrated that even differentiated cells contain all of the genetic information that is required for the development of entire organism and an oocyte contains factors that can reprogram somatic cell nuclei. Moreover, ESCs are also reported to possess factors that can reprogram somatic cells (Tada et al., 2001). The second stream in this aura was the discovery of "master" transcriptional factors. In 1987, Antennapedia a Drosophila transcriptional factor was reported to induce the formation of legs instead of antennae when ectopically expressed (Schneuwly et al., 1987). These results led to the concept of a "master regulator," a transcription factor that determine and induce the fate of a given lineage. Many researchers began to search for single master regulators for various lineages. The attempts failed, with a few exceptions (Yamanaka and Blau, 2010). In 2006, Takahashi and Yamanaka reported that stem cells with properties similar to ESCs could be generated from mouse fibroblasts by simultaneously introducing four genes and designated those cells as iPSCs. A similar approach is applicable for human fibroblasts and by introducing a handful of factors; human iPSCs can be generated (Takahashi et al., 2007; Yu et al., 2007). Generation of mouse ESCs was followed by the establishment of culture conditions to enable the long-term maintenance of pluripotency (Smith et al., 1988).

Now a days, convergence approach for direct deterministic turning of somatic cells into iPSCs using viral vectors such as retroviruses and lentivirus as a vehicle for genes insertion is in vogue. These vehicles (viruses) pose number of problems including copy number variations (CNVs), *de novo* generation of genetic mosaicism, protein-coding point mutations and overexpression of few specific genes (Hussein *et al.*, 2011; Gore *et al.*, 2011). It is observed that long-term studies

Address in councility of the		eve it we can be a solution of the second of the second se					
Name of Method	Experimental design*	Vector type	Factors	Efficiency %	Advantages	Disadvantages	References
EF/AF,NSC, Retroviral integrating SC/LC KRC / method AMC,BC/ AC into iPS	EF/AF,NSC, SC/LC KRC / AMC,BC/ AC into iPS	Retroviral	OSKM and VPA,	0.01-0.02%	- Reasonably efficient	-Genomic integration, -Incomplete pro- viral silencing and slow kinetics	Takahashi and Yamanaka, (2006), Okita <i>et al.</i> , (2007) Park <i>et al.</i> , (2008)
Lentiviral plus cre-lox mediated transgene excision method	Fibroblasts and KRC	Lentiviral	OSKM miR302 miR367 and VPA	0.1-2%	-Reasonably efficient -Genomic and transduces integration dividing and non- incomplet dividing cells proviral sil	-Genomic integration and incomplete proviral silencing	Chang <i>et al.</i> , (2009) Soldner <i>et al.</i> , (2009) Sommer <i>et al.</i> , (2009) Somers <i>et al.</i> , (2010)
Adenovirus Mediated non- integrating method	Fibroblasts and LC	Adenoviral	OSKM	0.001 - 0.0001%	-No genomic integration	-Low efficiency	Stadtfeld <i>et al.</i> , (2008) Zhou and Freed, (2009)
Sendai virus mediated DNA free method	NF/DF	Sendai Viral	OSKM	0.1- 1%	-No genomic integration	-Sequence- sensitive RNA replicase, and -diffculty in purging cells	Fusaki <i>et al.</i> , (2009) Seki <i>et al.</i> , (2010)
Protein DNA free method	Fibroblasts	Protein	S	0.006%	-No genomic integration, -direct delivery of transcription factors	-Low efficiency, -short half-life, and -requirement of bulk amount of protein	Kim et al., (2009) Contd.

105

PiggyBac mediated method MEF PiggyBac OKS 0.02–0.05% Pindention iPS cell production iPS cell production Lower efficiency Moltine et al., (2009) Minicircle Fibroblasts / hASC Minicircle Lin28, GFP, iPS cells 0.02–0.05% PiggyBac PiggyBac et al., (2010) Minicircle Fibroblasts / hASC Minicircle Lin28, GFP, iPS cells 0.005% Picton of xeno-free commonly used (2014) Pilkiyama et al., (2010) Minicircle Fibroblasts Minicircle Lin28, GFP 0.005% Picton free Lower efficiency Jia et al., (2010) Minicircle Fibroblasts EPISOMAL Nanog, OS 0.005% Picto-free Lower efficiency Jia et al., (2010) Episonal Plasmids Kin fibroblasts EPISOMAL Nanog, OS 0.0006% Picto-free Lower efficiency Jia et al., (2010) Episonal Plasmids Kin fibroblasts PilzASMIDS Nanog, OS Notoduction of iPSC Very low Very low Episonal Method Munan Chemo OSKM - OSKM Very low (2014) <th>-Lower efficiency than other commonly used methods -Lower efficiency efficiency Very low efficiency Very low efficiency ceratinocytes/ Amnioti onic fibroblasts, hASC cells.</th> <th>PiggyBac mediated MEF PiggyBac OKS 0.02–0.05% -virus-independent -Lo method Minicircle Fibroblasts / Minicircle 0.02–0.05% PiggyBac cell production that Minicircle Fibroblasts / Minicircle Lin28, GFP, 0.005% Production of xeno-free con WectorsBased hASC vectors Nanog, OS 0.005% production of -Lo Winicircle Episomal Plasmids Skin fibroblasts PLASMIDS Nanog, and 0.0003% -zero-footprint -Ve Episomal Plasmids Skin fibroblasts PLASMIDS Nanog, and 0.0006% iPSCs -Ve Chemical Method human Chemical O.0006% iPSCs -Yero Yero free Yero free * EF/AF-embryonic / adult fibroblasts Nemonal renn cells, SC/LC - Stomach cells, Liver cells, KRC/AMC - Keratir -Ver Yero free Yero free Yero * EF/AF-embryonic / adult fibroblasts/ Dermal fibroblast</th> <th>0.02-0.05% 0.005% 0.0006% 0.0006% - - omach cells / Li oose stromal cel ic acid, iPSCs -</th> <th>OKS Lin28, GFP, Nanog, OS OSKM Nanog, and SV40 Large T antigen and Lin28. OSKM Cells, SC/LC - Sto Dasts ASC - Adip OSKM</th> <th>PiggyBac Minicircle vectors EPISOMAL PLASMIDS PLASMIDS -Neuronal stem ts/ Dermal fibrol</th> <th>MEF Fibroblasts / hASC Skin fibroblasts Skin fibroblasts fibroblasts Myc and Lin28</th> <th>PiggyBac mediated method Minicircle VectorsBased method Episomal Plasmids mediated method Chemical Method Chemical Method Adipose cells, NF/DF ad SKML - Oct4, Sox2, K</th>	-Lower efficiency than other commonly used methods -Lower efficiency efficiency Very low efficiency Very low efficiency ceratinocytes/ Amnioti onic fibroblasts, hASC cells.	PiggyBac mediated MEF PiggyBac OKS 0.02–0.05% -virus-independent -Lo method Minicircle Fibroblasts / Minicircle 0.02–0.05% PiggyBac cell production that Minicircle Fibroblasts / Minicircle Lin28, GFP, 0.005% Production of xeno-free con WectorsBased hASC vectors Nanog, OS 0.005% production of -Lo Winicircle Episomal Plasmids Skin fibroblasts PLASMIDS Nanog, and 0.0003% -zero-footprint -Ve Episomal Plasmids Skin fibroblasts PLASMIDS Nanog, and 0.0006% iPSCs -Ve Chemical Method human Chemical O.0006% iPSCs -Yero Yero free Yero free * EF/AF-embryonic / adult fibroblasts Nemonal renn cells, SC/LC - Stomach cells, Liver cells, KRC/AMC - Keratir -Ver Yero free Yero free Yero * EF/AF-embryonic / adult fibroblasts/ Dermal fibroblast	0.02-0.05% 0.005% 0.0006% 0.0006% - - omach cells / Li oose stromal cel ic acid, iPSCs -	OKS Lin28, GFP, Nanog, OS OSKM Nanog, and SV40 Large T antigen and Lin28. OSKM Cells, SC/LC - Sto Dasts ASC - Adip OSKM	PiggyBac Minicircle vectors EPISOMAL PLASMIDS PLASMIDS -Neuronal stem ts/ Dermal fibrol	MEF Fibroblasts / hASC Skin fibroblasts Skin fibroblasts fibroblasts Myc and Lin28	PiggyBac mediated method Minicircle VectorsBased method Episomal Plasmids mediated method Chemical Method Chemical Method Adipose cells, NF/DF ad SKML - Oct4, Sox2, K
Woltjen <i>et al.</i> , (2009) Tsukiyama <i>et al.</i> , (2014)	-Lower efficiency than other commonly used methods	-virus-independent iPS cell production -option of xeno-free iPS cells	0.02-0.05%	OKS	PiggyBac	MEF	3ac mediated 1
Miyoshi <i>et al.</i> , (2011)	-Lower efficiency than other commonly used methods	-More efficient then lentiviral or retroviral methods - no risk of integration	0.1%	miR-200c miR-302s miR-369s	miRNA	ASC/DF	miRNA infection/ transfection method
Warren <i>et al.</i> , (2012)	-Requirement for multiple rounds of transfection	-No genomic integration, -faster reprogramming kinetics, high efficiency	0.1- 4.4%	OSKML and VPA	Modified mRNA	Fibroblasts	mRNA Transfection method

must focus on functional characterization of reprogramming-associated mutations to aid to the creation of clinical safety standards. Further rigorous work on mutation rates, distributions during *in vitro* culturing and reprogramming of hiPSCs and hESCs is the dire need of the hour. It will be essentially helpful in the establishment of clinical safety standards for genomic integrity. The current study was planned with an objective to know about the various methods, their comparative efficacy to derive iPSCs and to outline the functional assessments of pluripotency. Moreover, how the iPSCs genes influence the role of each cell type in disease modeling, therapeutics and regenerative medicine as well as prediction for the evolution of the art of reprogramming of somatic cells has also been studied.

TECHNIQUES USED FOR REPROGRAMMING OF SOMATIC CELLS TO iPSCs

iPSC reprogramming got its existence through the over-expression "Yamanaka factors (transcription factors)". A retroviral delivery system in mouse and human fibroblasts was successfully adopted during the iPSC reprogramming (Takahashi and Yamanaka, 2006; Takahashi *et al.*, 2007). The biggest disadvantage of iPSC reprogramming method from a translational perspective is that the reprogramming vectors are integrated into an infected cell's genome. Since Yamanaka's breakthrough discovery, many different methods are in vogue to develop iPSCs (Table 1). Although various viral, nonviral DNAs and miRNA are currently involved as delivery of reprogramming factors. The major lacunae faced in the most of the reprogramming techniques are low efficiency, genetic finger printing, genome integration and mutations. The plasmid based approach of reprogramming is the most preferred among all these techniques because of it efficiency and its ability to excise the genome without leaving a footprint i.e. iPSCs genome without any genetic alteration (Yusa *et al.*, 2009; Tsukiyama *et al.*, 2014; Table 1).

MARKERS OF PLURIPOTENCY AND THEIR APPLICATIONS

Ectopic expression of the transcription factors Oct4, Sox2, c-Myc, and Klf4 in fibroblasts generates iPSCs (Takahashi and Yamanaka, 2006; Yu *et al.*, 2007; Park *et al.*, 2008; Yu *et al.*, 2009; Okita *et al.*, 2010; Stadtfeld and Hochedlinger, 2010; Warren *et al.*, 2012). Pluripotency markers have been recently, validated for the Yamanaka's factors which can induce the reprogramming of cochlear cells, fibroblasts and somatic cells into iPSCs and express ESC like markers (Table 2). However, it exhibits pluripotency during in-vitro and in-vivo conditions. Recently a breakthrough has been achieved by generating fully pluripotent iPSCs from mammalian cochleae with defined exogenous genes (Du and Lou, 2014).

Table 2: Marke	ers of pluripotency
----------------	---------------------

Name of iPSC markers	Experiment Design	Techniques used for validation	References
Flt1+, Flt4+	mouse embryonic stem cells and Cardiovascular progenitor cells (CPCs) vs normal cells	Microarray, FACS, Immuno- histochemistry, qRT- PCR	Nsair <i>et al.</i> , (2012)
OCT4, NANOG and SOX2	Fibroblasts vs normal cells	FACS, IHC, qRT-PCR, Wetern blot,	Chang and Daley, (2008) Yu <i>et al.</i> , (2009) Jia <i>et al.</i> , (2010)
OSKM, SSEA-1, Thy1+, X-GFP	Viral and fibroblasts vs normal cells	FACS, qRT-PCR	Stadtfeld <i>et al.</i> , (2008)

APPROACHES TO DISEASE MODELING WITH iPSCs

In recent decades, nanotechnology has attracted major interests in the field of drug delivery systems and therapies against broader range of diseases, such as cancer, and neurodegenerative diseases. Therapies involving stem cells are considered to have an outstanding potential in the treatment for numbers of maladies. Consequently, the combination of nano-medicines and iPSCs could actually be the potent arms for remedies in transplantation medicine and personalized medicine (Jang et al., 2014). iPSCs, currently have been used to model Parkinson's disease (PD) in human. Fibroblasts from patients carrying pathogenic mutations that lead to PD have been reprogrammed into iPSCs, which can subsequently be differentiated into important cell types (Beevers et al., 2013). The emerging "Organs-on-Chips" technology in combination with iPSCs offers unprecedented opportunities to develop human invitro models (Table 3). Moreover, this combined approach enabled to investigate the fundamental mechanisms involved in disease development, screening of drug toxicity, drug target discovery, testing of healthy and diseased organ tissues (van de Stolpe and den Toonder, 2013). In contrast, validation and optimization through these systems will likely be a long process. Organs that have been simulated by microfluidic devices include the heart, the lung, kidney, artery, bone, cartilage and skin. iPSCs can further be used in the artificial organ synthesis on bio-surface and generate desired tissues or organs on electronic circuit and substrate such as Artery-on-a-chip, nephron-on-a-chip and Kidney-on-a-chip.

All these theories of iPSCs application in the therapeutic approaches may open the new avenue for the animal biotechnology to develop the iPSCs based therapeutic regimens for the treatment of animal diseases.

Name of disease	Molecular defects	Cell types differentiate from iPSC	References
Amyotrophic	mutations in the SOD1		Chestkov <i>et al.</i> , (2014)
Lateral Sclerosis	gene	glial cells	(2014)
Parkinson's disease	Mutation in the LRRK2, PARK2,	Differentiation of DA Neurons from	Sundber <i>et al.</i> , (2013)
	PARK7, PINK1, GBA, UCHL1 and SNCA gene	Pluripotent Stem Cells	
Huntington's disease	72 CAG repeats in the huntingtin gene	Human fibroblast into iPSC-Derived NSC	Mattis <i>et al.,</i> (2012)
Sickle-cell anaemia	Homozygous HbS	Haematopoietic cells	Kim, (2014);
	mutation		Sebastiano <i>et al.</i> , (2011)
α1-Antitrypsin deficiency (A1ATD)	Homozygous mutation in the α 1-antitrypsin gene	Hepatocyte-like cells (fetal)	Yusa <i>et al.</i> , (2011)
Type 1 diabetes	Multifactorial; unknown	β-Cell-like cells (express somatostatin, glucagon and insulin; glucose-responsive)	Thatava <i>et al.</i> , (2012)

Table 3: Approaches to Disease Modeling with iPSCs.

iPSC DERIVATION, DIFFERENTIATION AND APPLICATIONS

Nowadays research on iPSCs application is emphasizing in human medicine and later this may bring the breakthrough in the animal biotechnology for treating numerous breakthroughs. As iPSCs derived from any patient, can self-renew and differentiate into many cell types. They offer a renewable tissue resource for disease modeling, developing novel strategies for drug discovery or drug 'rescue' and studying interactions between the gene of interest and drug, (Bellin *et al.*, 2012; van de Stolpe and den Toonder, 2013).

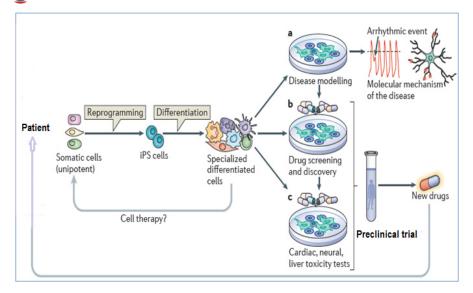


Figure 1: Reprogramming of adult stem cells (unipotent) into induced pluripotent stem cells (Modified from Bellin *et al.*, 2012).

CONCLUSION

The possibility of reprogramming adult somatic cells into iPSCs has created a renewed interest in the arena of stem cell research. It promises to overcome several key issues, including the ethical concerns of using human embryonic stem cells and the difficulty of obtaining large numbers of adult stem cells (Izpisua Belmonte *et al.*, 2009). The traditional approaches involved in the transformation of somatic cells to pluripotency revealed very low efficiency of reprogramming, genetic aberrations, manipulations and mutations which can cause several abnormalities at the molecular basis of the life (Stadtfeld et al., 2008; Fusaki et al., 2009; Kim et al., 2009; Zhou and Freed, 2009; Hussein et al., 2011; Gore et al., 2011). Recent scenarios of inventions are focusing at iPSCs reprogramming without genetic incorporations, zero genetic aberrations and zero foot print based approaches. To achieve successful gene therapy, development of proper gene delivery systems could be one of the most important factors. Several non-viral and viral gene transfer methods have been developed. Even though the viral agents have a high transferring efficiency but they are difficult to handle due to their toxic side effects. To overcome the safety problems of the viral counterpart, several nonviral *in-vitro* and *in-vivo* gene delivery systems have been developed. Out of these, the most promising and latest system include plasmid mediated gene insertion. Shunning of possible immunogenicity, toxicity, and the feasibility of repeated administration are some of the merits of non-viral gene delivery systems over viral gene delivery (Woltjen et al., 2009; Steffy B Manjila et al., 2013; Tsukiyama et al.,

2014). Plasmid mediated and transposon-based reversible genetic modification is a novel paradigm for iPS induction.

ACKNOWLEDGEMENT

This study was supported by a grant from the National Research Foundation of Korea (Grant No. 2013-0968).

REFERENCES

- Anastasia, L., Pelissero, G., Venerando, B. and Tettamanti, G. 2010. Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death Differ, 17(8):1230-1237.
- Beevers, J.E., Caffrey, T.M. and Wade-Martins, R. 2013. Induced pluripotent stem cell (iPSC)-derived dopaminergic models of Parkinson's disease. *Biochem Soc Trans*, 41(6):1503-1508.
- Bellin, M., Marchetto, M.C., Gage, F.H. and Mummery, C.L. 2012. Induced pluripotent stem cells: the new patient?. *Nat Rev Mol Cell Biol*, 13(11):713-26.
- Chang, C.W., Lai, Y.S., Pawlik, K.M., Liu, K₂, Sun, C.W., Li, C., Schoeb, T.R₂ and Townes, T.M₂ 2009. Polycistronic lentiviral vector for "hit and run" reprogramming of adult skin fibroblasts to induced pluripotent stem cells. *Stem Cells*, 27(5):1042-1049.
- Chen, L. and Daley, G.Q. 2008. Molecular basis of pluripotency. *Hum Mol Genet*, **17**:R23–R27.
- Chestkov, I.V., Vasilieva, E.A., Illarioshkin, S.N., Lagarkova, M.A. and Kiselev, S.L. 2014. Patient-Specific Induced Pluripotent Stem Cells for SOD1-Associated Amyotrophic Lateral Sclerosis Pathogenesis Studies. *Acta Naturae*, 6(1):54-60.
- Du, D. and Lou, X. 2014. Generation of induced pluripotent stem cells from neonatal mouse cochlear cells. *Differentiation*, pii: S0301-4681(14)00008-5.
- Evans, M.J., and Kaufman, M.H. 1981. Establishment in culture of pluripotential cells from mouse embryos. *Nature*, **292:**154-156.
- Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. and Hasegawa, M. 2009. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. *Proc Jpn Acad Ser B Phys Biol Sci*, 85(8):348-362.
- Gore, A., Li, Z., Fung, H., Young, J.E., Agarwal, S., Antosiewicz-Bourget, J., Canto, I., Giorgetti, A., Israel, M.A., Kiskinis, E., Lee, J.H., Loh, Y.H., Manos, P.D., Montserrat, N., Panopoulos, A.D., Ruiz, S., Wilbert, M.L., Yu, J., Kirkness, E.F., Belmonte, J.C.I., Rossi, D.J., Thomson, J.A., Eggan, K., Daley, G.Q., Goldstein, L.S.B., and Zhang, Kun. 2011. Somatic coding mutations in human induced pluripotent stem cells. Nature, 471:63-67.

- Gurdon, J.B. 1962. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. *J. Embryol. Exp. Morphol*, **10**:622-640.
- Hussein, S.M., Batada, N.N., Vuoristo, S., Ching, R.W., Autio, R., Na"rva, E., Ng, S. Sourour, M., Ha"ma"la"inen, R., Olsson, C., Lundin, K., Mikkola, M., Trokovic, R., Peitz, M., Bru"stle, O., Bazett-Jones, D.P., Alitalo, K., Lahesmaa, R., Nagy A., and Otonkoski, T. 2011. Copy number variation and selection during reprogramming to pluripotency. *Nature*, 471:58–62.
- Imamura, M., Okuno, H., Tomioka, I., Kawamura, Y., Lin, Z.Y., Nakajima, R., Akamatsu, W., Okano, H.J., Matsuzaki, Y., Sasaki, E., and Okano, H. 2012. Derivation of Induced Pluripotent Stem Cells by Retroviral Gene Transduction in Mammalian Species. Nora Engel (ed.), *Meth. Mol. Biol.*, **925**:21-48.
- Izpisúa Belmonte, J.C., Ellis, J., Hochedlinger, K., and Yamanaka, S. 2009. Induced pluripotent stem cells and reprogramming: seeing the science through the hype. *Nat. Rev. Genet.*, **10**(12):878-83.
- Jang, S.F., Liu, W.H., Song, W.S., Chiang, K.L., Ma, H.I., Kao, C.L. and Chen, M.T. 2014. Nano medicine-based neuroprotective strategies in patient specific-iPSC and personalized medicine. *Int. J Mol. Sci.*, 15(3):3904-25.
- Jia, F., Wilson, K.D., Sun, N., Gupta, D.M., Huang, M., Li, Z., Panetta, N.J., Chen, Z.Y., Robbins, R.C., Kay, M.A., Longaker, M.T. and Wu, J.C. 2010. A nonviral minicircle vector for deriving human iPS cells. *Nat. Meth.*, 7(3):197-199.
- Kim, C. 2014. Disease modeling and cell based therapy with iPSC: future therapeutic option with fast and safe application. *Blood Res.*, 49(1):7-14.
- Kim, D., Kim, C.H., Moon, J.I., Chung, Y.G., Chang, M.Y., Han, B.S., Ko, S., Yang, E., Cha, K.Y., Lanza, R. and Kim, K.S. 2009. Generation of Human Induced Pluripotent Stem Cells by Direct Delivery of Reprogramming Proteins. *Cell Stem Cell*, 4(6):472-476.
- Mattis, V.B., Svendsen, S.P., Ebert, A., *et al.*, 2012. Induced Pluripotent Stem Cells from Patients with Huntington's Disease Show CAG-Repeat-Expansion-Associated Phenotypes. *Cell Stem Cell*, 11:264-278.
- Miyoshi, N., Ishii, H., Nagano, H., Haraguchi, N., Dewi, D.L., *et al.*, 2011. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. *Cell Stem Cell*, 8:633-638.
- Nsair, A., Schenke-Layland, K., Van Handel, B., Evseenko, D., Kahn, M., et. al., 2012. Characterization and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cells. PLoS One, 7(10):e45603.
- Okita K., Hong H., Takahashi K. and Yamanaka S. 2010. Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc, 5(3):418-428.
- Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. 2008. Reprogramming of human somatic cells to pluripotency with defined factors. *Nature*, 451(7175):141-146.

- Schneuwly, S., Klemenz, R. and Gehring, W.J. 1987. Redesigning the body plan of Drosophila by ectopic expression of the homoeotic gene Antennapedia. *Nature*, 325: 816-818.
- Sebastiano, V., Maeder, M.L., Angstman, J.F., Haddad, B., Khayter, C., et. al., 2011. In Situ Genetic Correction of the Sickle Cell Anemia Mutation in Human Induced Pluripotent Stem Cells Using Engineered Zinc Finger Nucleases. *Stem Cells*, 29(11):1717-1726.
- Seki, T., Yuasa, S., Oda, M., Egashira, T., Yae, K., et. al., 2010. Generation of Induced Pluripotent Stem Cells from Human Terminally Differentiated Circulating T Cells. Cell Stem Cell, 7:11-14.
- Smith, A.G., Heath, J.K., Donaldson, D.D., Wong, G.G., Moreau, J., Stahl, M., and Rogers, D. 1988. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. *Nature*, **336**:688–690.
- Soldner, F., Hockemeyer, D., Beard, C., Gao, Q., Bell, G.W., Cook, E.G., Hargus, G., Blak, A., Cooper, O., Mitalipova, M., Isacson, O. and Jaenisch, R. 2009. Parkinson's Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors. *Cell*, **136**:964-977.
- Somers, A., Jean, J.C., Sommer, C.A., Omari, A., Ford, C.C., et. al., 2010. Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. Stem Cells, 28(10):1728-1740.
- Sommer, C.A., Stadtfeld, M., Murphy, G.J., Hochedlinger, K., Kotton, D.N. and Mostoslavsky, G. 2009. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. *Stem Cells*, 27(3):543-549.
- Stadtfeld, M. and Hochedlinger, K. 2010. Induced pluripotency: history, mechanisms, and applications. *Genes Dev*, 24:2239-2263.
- Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. and Hochedlinger, K. 2008. Induced Pluripotent Stem Cells Generated Without Viral Integration. *Science*, **322**(5903):945-949.
- Stadtfeld, M., Maherali, N., Breault, D.T. and Hochedlinger, K. 2008. Defining Molecular Cornerstones during Fibroblast to iPS Cell Reprogramming in Mouse. *Cell Stem Cell*, 2(3):230-240.
- Steffy, B.M., Jomon, N.B., Elambilan, N.B., Icey, C., Kannissery, P., and Janardhanan, V. 2013. Novel gene delivery systems. *Int. J. Pharm. Investig.*, 3(1): 1-7.
- Sundberg, M., Bogetofte, H., Lawson, T., Jansson, J., et. al., 2013. Improved Cell Therapy Protocols for Parkinson's Disease Based on Differentiation Efficiency and Safety of hESC-, hiPSC-, and Non-Human Primate iPSC-Derived Dopaminergic Neurons. *Stem Cells*, **31**(8):1548-1562.
- Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. and Tada, T. 2001. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. *Curr. Biol*, **11**:1553-1558.

- Takahashi, K. and Yamanaka, S. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell*, **126**:663-676.
- Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K. and Yamanaka, S. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. *Cell*, 131:861-872.
- Thatava, T., Kudva, Y.C., Edukulla, R., Squillace, K., De Lamo, J.G., Khan, Y.K., Sakuma, T., Ohmine, S., Terzic, A. and Ikeda, Y. 2012. Intrapatient Variations in Type 1 Diabetes-specific iPS Cell Differentiation Into Insulin-producing Cells. *Mol. Ther.*, 21(1):228-239.
- Tsukiyama, T., Kato-Itoh, M., Nakauchi, H. and Ohinata, Y. 2014. A Comprehensive System for Generation and Evaluation of Induced Pluripotent Stem Cells Using piggyBac Transposition. *PLoS One*, 9(3):e92973.
- van de Stolpe, A. and den Toonder, J. 2013. Workshop meeting report Organs-on-Chips: human disease models. Lab. Chip.**13**(18):3449-3470.
- Warren, L., Ni, Y., Wang, J. and Guo, X. 2012. Feeder-Free Derivation of Human Induced Pluripotent Stem Cells with Messenger RNA. *Sci. Rep.*, 2(657):1-7.
- Wilmut, I., Schnieke, A.E., McWhir, J., Kind, A.J. and Campbell, K.H. 1997. Viable offspring derived from fetal and adult mammalian cells. *Nature*, 85:810-813.
- Woltjen, K., Michael, I.P., Mohseni, P., Desai, R., Mileikovsky, M., et. al., 2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. *Nature*, 458(7239):766-770.
- Yamanaka, S. and Blau, H.M. 2010. Nuclear reprogramming to a pluripotent state by three approaches. *Nature*, 465:704–712.
- Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I. and Thomson, J.A. 2007. Induced pluripotent stem cell lines derived from human somatic cells. *Science*, 318:1917-1920.
- Yusa, K., Rad, R., Takeda, J. and Bradley, A. 2009. Generation of transgene free induced pluripotent mouse stem cells by the piggyBac transposon. *Nat Methods*, 6(5):363-9.
- Yusa, K., Rashid, S.T., Strick-Marchand, H., Varela, I., et. al., 2011. Targeted gene correction ofa1-antitrypsin deficiency in induced pluripotent stem cells. *Nature*, 478(7369):391-394.
- Zhou, W. and Freed, C.R. 2009. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. *Stem Cells*, 27(11):2667-2674.