Microbiology

Screening of *Bacillus thuringiensis* Isolates Recovered from Diverse Habitats in India for the Presence of Insect and Nematode-active *cry* Genes

Rajendra Kumar Meena^{1,2*} and Sarvjeet Kaur¹

¹National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India ²Division of Genetics and Tree Propagation, Forest Research Institute, Dehradun, India

Email: rajnrcpb@gmail.com

Paper No. 179 Received: January 01, 2014 Accepted: February 27, 2014 Published: March 03, 2014

Abstract

Novel *cry* genes with different structure and mode of action are potential candidates for resistant management strategies. Isolation of novel genes needs thorough screening of large number of native *Bacillus thuringiensis* (Bt) isolates collected from diverse habitats and ecotypes. In the present study, 63 Bt isolates recovered from different habitats in India have been investigated for their insecticidal and nematicidal *cry* gene content. Bt isolates were screened through Polymerase Chain Reaction (PCR) using degenerate primers for the presence of *cry*1, *cry*1A and nematode-active *cry* genes. Among the collection of 63 Bt isolates 21 were found positive for the presence of *cry*1-type genes, 49 for *cry*1A-type genes and 20 for nematode-active *cry* genes. Nine Bt isolates were found positive for all three types of *cry* genes. The study also show that PCR based screening method is rapid and highly useful for characterization of Bt isolates to reveal their insecticidal spectrum.

Highlights

- Sixty three native Bt isolates were screened for the presence of insect and nematode-active cry Genes.
- Twenty one were found positive for the presence of *cry*1-type genes, 49 for *cry*1A-type genes and 20 for nematodeactive *cry* genes.

Keywords: Bacillus thuringiensis, PCR screening, cry1-type genes, cry1A-type genes, nematicidal cry genes

Introduction

Bacillus thuringiensis is a gram-positive, spore-forming bacterium that produces crystal inclusions during the sporulation phase. The crystals comprise one or more Cry proteins (δ -endotoxins) that are specifically toxic to insect orders such as *Lepidoptera*, *Diptera*, and *Coleoptera* and also to some nematodes, mites, and protozoa (Schnepf *et al.*, 1998; Bravo *et al.*, 2011). Cry proteins act by binding to receptors and subsequent insertion into the brush border membrane in the midgut of susceptible insects, leading to disruption of osmotic balance, cell lysis and eventually death of the insect (Kaur, 2000; Bravo *et al.*, 2011). Bt has been used as a successful biological insecticide for more than 100 years and is a uniquely specific, safe and effective tool for the control of a wide variety of insect pests (Nester *et al.*, 2002; Romeis *et al.*, 2006). The efficacy and host range of the strain is dependent on the *cry* genes the strain carries (Schnepf *et al.*, 1998; Aly, 2011).

Usually the Bt strains carry a combination of *cry* genes and therefore become effective against different insect pests. Therefore, identifying the *cry* genes carried by a strain provides a clue regarding the utility of the strain against different groups of insects.

However, there is a threat of eventual development of resistance in insects upon large-scale cultivation of transgenic crops (Shelton *et al.*, 2002; Kaur and Gujar, 2004). Development of second-generation Bt transgenic crops requires new insecticidal genes for stacking or pyramiding wherein more than one insecticidal genes are used in combination as a resistance management strategy (Zhao *et al.*, 2003; Kaur, 2006). Therefore, the isolation of novel Bt strains and characterizing them for their insecticidal genes with higher toxicity which can provide an alternative to cope up with emergence of insect resistant population against currently deployed limited number of *cry*-type gene (s).

Since the first cry gene was cloned from Bt ssp. Kurstaki HD-1 in 1981 (Schnepf and Whiteley, 1981) the search for new cry genes is an ongoing effort worldwide and so far more than 500 different cry gene sequences have been classified into 67 groups (Cry1-Cry67) (Crickmore et al., 2010). To identify novel cry genes Bt strains have been isolated worldwide from diverse habitats, including soil (Kaur and Singh, 2000a), stored grains (Meadows et al., 1992), phyllospheres (Kaur and Singh, 2000b; Jara et al., 2006) and other miscellaneous habitats (Martinez and Caballero, 2002; Uribe et al., 2003; Apaydin et al., 2005). Among the techniques used in profiling the cry genes carried by a strain, PCR based approach is proved to be useful for its sensitivity, reproducibility and rapidity. Therefore, different PCR based methods have been deployed to identify the cry genes in Bt strains (Porcar and Juarez-Perez, 2003;

Table	1:	List	of	Bt	reference	strains
-------	----	------	----	----	-----------	---------

Beron *et al.*, 2005; Kaur, 2006; Thammasittirong and Attathom, 2008).

The present study was conducted to screen our collection of native Bt isolates for the presence of insect and nematode-active *cry* genes. For that lepidopteron-active genes of *cry*1 family and various nematicidal *cry* genes have been amplified through PCR using degenerate primer sets.

Materials and Methods

Bacterial isolates and strains

Sixty three native Bt isolates recovered from diverse agricultural and non-agricultural locations in India in the corresponding author Dr. S. Kaur's laboratory were used in this study (Table 3). Bt strains used as reference in this study were kindly provided by Dr. D.R. Ziegler, Director, Bacillus Genetic Stock Center, Ohio State University, Columbus, OH, USA to Dr. S. Kaur (Table 1).

Growth media for bacterial Strains

Luria Bertani Agar (LA) and Luria Bertani Broth (LB) were used for the growth of Bt isolates and strains.

Oligonucleotide PCR primers

A set of general primers (gral-cry1) designed as per Bravo *et al.*, (1998) was used in PCR amplification for the detection of partial *cry*1-type genes and a set of specific primers designed as per Rolle *et al.* (2005) was used for detection of partial *cry*1A-type genes. In addition to insecticidal *cry* genes, Bt isolates were also screened for nematode-active *cry* genes using a set of general primers (gral-nem) designed as per Bravo *et al.*, (1998) (Table 2).

Si. No.	Bt strains	BGSC code	Original code	
1.	B. thuringiensis subsp. taumanoffi	4N1	HD 201(B-30-2)	
2.	B. thuringiensis subsp. thuringiensis	4A6	1715	
3.	B. thuringiensis subsp. aizawai	4J2	HD137 (HDB-24)	
4.	B. thuringiensis subsp. israelensis	4Q5	4Q2-72	
5.	B. thuringiensis subsp. darmstadiensis	4M2	HD199(102)	
6.	B. thuringiensis subsp. aizawai	4 J 4	HD11	
7.	B. thuringiensis subsp. kurstaki	4D1	HD1	
8.	B. thuringiensis subsp. Sotto	4E3	sotto	
9.	B. thuringiensis subsp. Kenyae	4F1	HD136	
10.	B. thuringiensis subsp. Alesti	4C3	HD4 (B. alesti 143)	

Primer pair	Gene(s) recognized	Product size (bp)	Sequence	References
gral-cry1	<i>cr</i> y1Aa, <i>cr</i> y1Ad, <i>cr</i> y1Ab, <i>cr</i> y1Ae, <i>cr</i> y1Ac, <i>cr</i> y1Af, <i>cr</i> y1Ba, <i>cr</i> y1Bb, <i>cr</i> y1Bc, <i>cr</i> y1Ca, <i>cr</i> y1Cb, <i>cr</i> y1Da, <i>cr</i> y1Db, <i>cr</i> y1Ea, <i>cr</i> y1Fa, <i>cr</i> y1Eb and <i>cr</i> y1Fb	543-594	Forward; 5'CTGGATTTAC AGGTGGGGGATAT3' Reverse; 5'TGAGTCGCTTCGCATA TTTGACT3'	Bravo <i>et al.</i> (1998)
U/19-merL/18-mer	<i>cry</i> 1A	450	Forward; 5'-CAAGATGGGCACGCA AGAC-3' Reverse; 5'-ACGACCCGGACAGAC ACG-3'	Rolle <i>et al.</i> (2005)
gral-nem	cry5Aa, cry5Ab, cry5Ac, cry5B, cry 12A, cry14A and cry21Aa	474-489	Forward; 5'TTACGTAAATTGGTC AATCAAGCAAA3' Reverse; 5'AAGACCAAATT CAATACCAGGGTT 3'	Bravo <i>et al.</i> (1998)

Table 2: Characteristics of primer sets used in PCR amplification

Genomic DNA extraction

Genomic DNA was extracted from Bt isolates by the method modified by Kalman et al. (1993). A single colony from a freshly streaked plate was incubated into 5 ml LB medium containing penicillin (10 µg ml-1) and incubated at 28°C overnight with shaking at 150 rpm. This starter culture was added to 50 ml LB medium and incubated at 28°C with shaking at 150 rpm to an optical density of 0.8 at 600 nm. The cells were harvested by centrifuging at 7000 rpm for 10 min (Beckman JA 20 rotor) at 4°C. The cell pellet was washed in 5 ml TES buffer (10 mM tris-HCl, 1 mM EDTA, 100 mM NaCl, pH 8.0) and suspended in 5 ml of resuspension solution (25% sucrose, 25 mM Tris-HCl, 25 mM EDTA, pH 8.0) containing 1 mg ml¹ lysozyme. The cell suspension was incubated at 37°C for 1 hour. 10% SDS was added to the suspension to a final concentration of 2% and the suspension was incubated at 50°C for 15 min and then at 4°C overnight. The suspension was centrifuged at 10,000 rpm for 15 min and the supernatant was carefully taken out. DNA in the supernatant was precipitated with 2 volumes of ethanol. DNA was resuspended in 10 ml TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) containing 1 M NaCl, 10 µg ml⁻¹ RNase and 0.6 mg ml⁻¹ Proteinase K and incubated at 30°C for 30 min. The mixture was extracted with phenol-chloroform (1:1) and DNA was precipitated with ethanol. DNA pellet was washed once with 70% ethanol, air-dried and dissolved in 300 il of TE buffer.

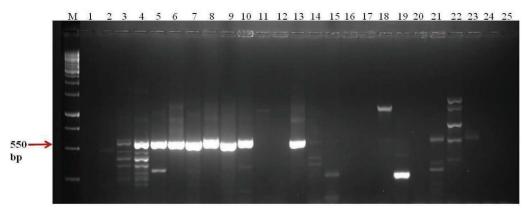
Plasmid DNA extraction

Plasmid DNA was isolated from Bt isolates and reference

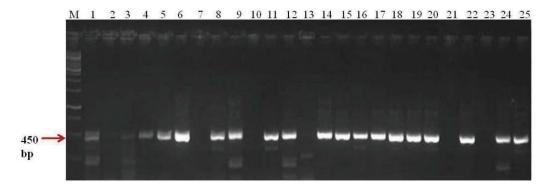
strains by using Qiagen Plasmid Midi kit (Qiagen, Germany). A single colony from a freshly streaked plate was inoculated into 5 ml LB medium containing penicillin (10 μ g ml⁻¹) and incubated at 28°C with shaking at 150 rpm. Overnight grown cultures were pelleted by centrifugation at 7000 rpm for 10 min at 4°C. Method as described in the supplier's manual was followed, with the modification of preheating of elution buffer to 50°C for isolation of large plasmids. DNA pellet was dissolved in 200 μ l TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). Plasmid DNA was size fractionated on 0.8% agarose gel along with 1 kb DNA ladder (MBI Fermentas, Germany). DNA bands were observed under UV in the gel documentation system (Alpha gel imager).

PCR analysis

PCR reaction was carried out for amplification of *cry*1type, *cry*1A-type and nematode-active *cry* genes using general set of primers. PCR was carried out in a reaction mixture of 25 iL containing DNA template 50 ng; PCR buffer with $(NH_4)_2SO_4$ and $MgCl_2$ (10X) 2.5 µl; deoxy ribonucleotide triphosphate (dNTPs) (2mM) 2.5 µl; primers (1 µM) 1 µl each; Taq DNA polymerase 1.0 U and sterile distilled water in thermal cycler (BioRad). Amplification of lepidopteron-active *cry*1-type genes and nematode active *cry* genes were carried out using general primer sets gralcry1 and gral-nem, respectively, for 30 cycles of denaturation at 94°C for 1 min, primer annealing at 43°C for 1 min and extension at 72°C for 1.5 min. Amplification of *cry*1A-type genes with a set of specific primers (U/19mer and L/18-mer) was carried out for 30 cycles with parameters similar to earlier except primer annealing which is at 54°C. In each PCR, first cycle of denaturation was performed for 2 min and the last cycle of extension was performed for 10 min. PCR products were visualized on 1.5% agarose gel using 1 kb DNA ladder marker.


Results and Discussion

Detection of partial cry1-type genes


Sixty three native Bt isolates and 10 reference Bt strains were subjected to PCR amplification using the gral-cry1 primer set to detect various genes of *cry*1 gene family. The PCR amplicon of expected size of about 550 bp with varying intensity corresponding to the highly conserved region of cry1 gene family was generated in 21 native Bt isolates and 6 reference Bt strains (Table 3). Care was taken to avoid non-specific amplification and for that *B*. *thuringiensis* subsp. *israelensis* (4Q5) was used as a negative control and as expected amplicon of 550 bp was not found. One representative gel picture is shown here for 24 Bt isolates and strains (Fig. 1).

Detection of cry1A-type genes

Same set of Bt isolates along with Bt reference strains were also screened through PCR for detection of various genes of *cry*1A gene family using specific primer set (U/19-mer and L/18-mer). The prominent PCR amplicon of expected size 450 bp corresponding to the highly conserved region of *cry*1A gene family was observed in 49 native Bt isolates and 6 reference Bt strains (Table 3). *B. thuringiensis* subsp. *israelensis* (4Q5) was used as a negative control and amplification of 450 bp band was not found. One representative gel picture is shown here for 24 Bt isolates and strains (Fig. 2).

Fig. 1: Representative picture of PCR amplification for *cry*1-type genes in Bt isolates and strains. M: 1kb DNA Ladder; 1: SK-217; 2: SK-957; 3: SK-980; 4: SK-935; 5: SK-223; 6: 4N1; 7: 4A6; 8: 4J2; 9: 4J4; 10: 4C3; 11: 4M2; 12: 4Q5; 13: SK-711; 14: SK-921; 15: SK-219; 16: SK-1; 17: SK-4; 18: SK-9; 19: SK-13; 20: SK-20; 21: SK-28; 22: SK-82; 23: SK-84; 24: SK-88 and 25: SK-222

Fig. 2: Representative picture of PCR amplification for *cry*1A type genes in Bt isolates and strains. M: 1kb DNA Ladder; 1: 4A6; 2: 4Q5; 3: SK-84; 4: SK-217; 5: SK-944; 6: SK-223; 7: SK-405; 8: SK-942; 9: SK-301; 10: SK-721; 11: SK-921; 12: SK-973; 13: SK-930; 14: SK-629; 15: SK-722; 16: SK-922; 17 SK-851; 18: SK-958; 19: SK-977; 20: SK-980; 21: SK-995; 22: SK-13; 23: SK-794; 24: SK-222 and 25: SK-935.

Si. No.	Bt Isolates	Source	Set 1*	Set 2*	Set 3*
1.	SK-1	Chickpea field, Rohtak, HR	-	+	-
2.	SK-4	Chickpea field, Rohtak, HR	-	-	-
3.	SK-9	Cotton field, Agreoha, UP	-	+	-
4.	SK-13	Cotton field, Malout, PB	-	+	-
5.	SK-20	Cotton field, Malout, PB	-	-	-
6.	SK-28	Soil near spring, HP	+	-	-
7.	SK-82	Grain dust,Bhareri, HP	+	+	+
8.	SK-84	Soil, Baramulla, J&K	+	-	-
9.	SK-88	Chickpea and mustard field, Dungarpur, RJ	-	-	-
10.	SK-110	Chickpea field, HP	-	+	+
11.	SK-217	Chickpea phyllosphere, IARI, ND	-	+	-
12.	SK-219	Chickpea phyllosphere, IARI, ND	-	+	-
13.	SK-222	Chickpea phyllosphere, IARI, ND	_	+	-
14.	SK-223	Pea phyllosphere, IARI, ND	+	+	+
15.	SK-232	Pea phyllosphere, IARI, ND	_	+	+
16.	SK-301	Field of nematode infestion, IARI, ND	_	+	-
17.	SK-304	Field of nematode infestion, IARI, ND	_	+	_
18.	SK-305	Field of nematode infestion, IARI, ND	-	+	_
10. 19.	SK-405	Chilli field black soil, Vemboor, TN	-	т	
1). 20.	SK-405 SK-449	Chilli field black soil, Vemboor, TN	-	+	-
20. 21.	SK-449 SK-463	Chilli field black soil, Vemboor, TN	-		-
21. 22.		, , ,	-	+	+
22. 23.	SK-617 SK-629	Cattle shed, Vemboor, TN	-	-	+
23. 24.		Cattle shed, Vemboor, TN	-	+	-
	SK-677	Kitchen garden, Alahbad	+	+	-
25.	SK-678	Kitchen garden, Alahbad	+	+	+
26.	SK-711	Red gram field, Lam, Guntur, AP	+	+	+
27.	SK-721	Soil from cotton field, Lam, Guntur, AP	-	-	-
28.	SK-722	Soil from cotton field, Lam, Guntur, AP	-	+	+
29.	SK-741	Cotton seeds Var: LK-389, Guntur, AP	-	+	-
30.	SK-753	Chickpea seeds, Lam, Guntur, AP	-	-	-
31.	SK-754	Chickpea seeds, Lam, Guntur, AP	+	+	+
32.	SK-792	Chilly seeds Warehouse, Guntur, AP	-	+	-
33.	SK-794	Chilly seeds Warehouse, Guntur, AP	+	-	
34.	SK-851	Wheat field, Burdwan, WB	-	+	-
35.	SK-921	Desert soil, Sriganganagar, RJ	-	+	+
36.	SK-922	Desert soil, Sriganganagar, RJ	-	+	+
37.	SK-930	Desert soil, Sriganganagar, RJ	+	-	-
38.	SK-935	Desert soil, Sriganganagar, RJ	+	+	+
39.	SK-942	Desert soil, Sriganganagar, RJ	-	+	-
40.	SK-944	Desert soil, Sriganganagar, RJ	-	+	-
41.	SK-952	Cotton field, Sriganganagar, RJ	+	+	-
42.	SK-953	Cotton field, Sriganganagar, RJ	+	+	+
43.	SK-956	Cotton field, Sriganganagar, RJ	-	+	+
44.	SK-957	Cotton field, Sriganganagar, RJ	-	+	+
45.	SK-958	Cotton field, Sriganganagar, RJ	+	+	-
46.	SK-959	Desert soil, Sriganganagar, RJ	-	+	-
47.	SK-960	Desert soil, Sriganganagar, RJ	+	+	-
48.	SK-962	Desert soil, Sriganganagar, RJ	-	+	-
49.	SK-973	Cotton field, Sriganganagar, RJ	-	+	+
50.	SK-977	Cotton field, Sriganganagar, RJ	+	+	-
51.	SK-980	Cotton field, Sriganganagar, RJ	+	+	+

Table 3: Prevalence of insect and nematode-active cry gene(s) in native Bt isolates

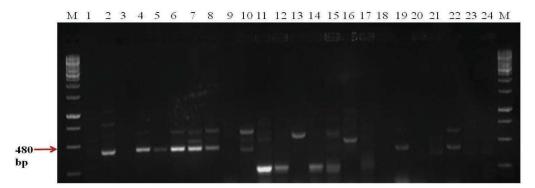
PRINT ISSN.: 0974-1712 ONLINE ISSN.: 2230-732X

©2014 New Delhi Publishers. All rights reserved

Contd.

Si. No.	Bt Isolates	Source	Set 1*	Set 2*	Set 3*
52.	SK-995	Cotton field, Sriganganagar, RJ	-	-	-
53.	SK-996	Grain dust, Sriganganagar, RJ	+	+	-
54.	SK-1007	Insect infested wheat grain, FCI godown, RJ	-	+	+
55.	SK-1008	Insect infested wheat grain, FCI godown, RJ	+	+	-
56.	SK-1009	Insect infested wheat grain, FCI godown, RJ	-	-	-
57.	SK-1025	Barren land, RJ	+	+	-
58.	SK-1026	Barren land, RJ	-	+	-
59.	SK-1027	Barren land, RJ	-	+	-
60.	SK-1028	Barren land, RJ	+	+	+
61.	SK-1034	Soil, Beminar, J&K	-	+	-
62.	SK-1035	Soil, Beminar, J&K	-	-	-
63.	SK-1036	Soil, Beminar, J&K	-	+	-

AP: Andra Pradesh, RJ: Rajasthan, WB: West Bengal, ND: New Delhi, J&K: Jammu and Kashmir, HP: Himachal Pradesh, TN: Tamil Nadu, PB: Punjab, HR: Haryana


Set 1*: PCR amplification for *cry*1-type genes using primer set 'gral-cry1'

Set 2*: PCR amplification for cry1A-type genes using primer set 'U/19-mer_L/18-mer'

Set 3*: PCR amplification for nematode-active cry genes using primer set 'gral-nem'

(+) : Represents the presence of the expected amplicon

(-): Represents the absence of the expected amplicon

Fig. 3: Representative picture of PCR amplification for nematode-active *cry* genes in Bt isolates and strains. M: 1kb DNA Ladder; 1: SK-9; 2: SK-223; 3: SK-219; 4: SK-957; 5: SK-921; 6: SK-935; 9: SK-4J4; 10: SK-232; 11: SK-1; 12: SK-4; 13: SK-13; 14: SK-20; 18: SK-88; 19: SK-110; 20: SK-217; 21: SK-222; 22: SK-232; 23 and SK-301.

Detection of nematode-active cry genes

To characterise collection of native Bt isolates for the presence of the nematicidal *cry*-type genes like *cry*5Aa, *cry*5Ab, *cry*5Ac, *cry*5B, *cry*12A, *cry*14A and *cry*21Aa, another set of general primers (gral-nem) was used in PCR amplification. The expected band of 480 bp with varying intensity was observed in 20 native Bt isolates and 4 Bt strains (Table 3). One representative gel picture is shown here for 24 Bt isolates and strains (Fig. 3).

Isolation of native Bt isolates from diverse habitats and ecotypes is of utmost importance to identify novel insecticidal *cry* genes. It is emphasized that discovery of novel *cry* genes with new or broad activity spectra or higher toxicity is important for the development of new products and the management of insect resistance (Xue *et al.*, 2008; Darsi *et al.*, 2010). Among the various molecular techniques, PCR screening with degenerate primers has proven to be a very useful and rapid method for detection of the *cry* genes (Porcar and Juarez-Perez, 2003; Kaur, 2006).

In the present study, a collection of native Bt isolates were screened for the presence of insecticidal and nematicidal *cry*-type genes through PCR using degenerate primer sets. Twenty one Bt isolates were found positive with amplicon of expected size when amplified with gral-cry1 primers while 49 Bt isolates were found positive when amplified with primer set (U/19-mer and L/18-mer). For amplification

of nematode-active *cry* genes a set of general primers (gralnem) was used and 20 isolates were found positive. In the PCR amplification for *cry*1-type genes and nematode-active *cry* genes comparatively less number of isolate were found positive and many dense bands of unexpected size were also observed. This may be due to higher degeneracy and broad specificity of gral-cry1 and gral-nem primers and dense amplicons of unexpected size might be novel *cry*type genes which need to be further characterized. Large numbers of positive isolates with specific amplicon were found with the primers specific to *cry*1A-type genes due to less degeneracy and higher specificity in the primer sequences.

This may be very useful preliminary study of strain characterization for cry gene content in their genome before isolation of specific full length genes. The isolates found positive in this study may be further used for isolation of corresponding full length gene by using gene specific primers or TAIL-PCR. On the basis of this study one full length gene has been amplified in the Bt isolate SK 711 by PCR using primers specific to cry1Aa,b,c (Meena et al., 2012). The gene was cloned, sequenced and classified as cry1Ac33 by the Bacillus thuringiensis Nomenclature Committee (http://www.biols.susx.ac.uk/Home / Neil_Crickmore/Bt/). Further studies of screening of native Bt isolates and cloning of novel full length genes are going on in our laboratory which may be highly useful to tackle the problem of emergence of insect resistance towards limitedly utilized cry genes in transgenic plants.

Conclusion

A collection of 63 native Bt isolates were characterized to reveal their insecticidal and nematicidal *cry* gene content. Different set of degenerate primers specific to various genes of different gene families were used for PCR amplification. In the study, 21 Bt isolates were found positive for *cry*1, 49 for *cry*1A and 20 for nematode-active *cry*-type gene.

Acknowledgement

Authors acknowledge R. K. Narula for technical assistance and Department of Biotechnology for financial assistance.

References

- Aly, N. A. H., A. M. Abdelaty and J. A. Teixeira da Silva. 2011. PCRbased identification and detection of *cry*1 genes in some *Bacillus thuringiensis* isolates. Pest Technology 5: 48-54.
- Apaydin, O., A. Yenidunya, S. Harsa and G. Hatice. 2005. Isolation and characterization of *Bacillus Thuringiensis* strains from

different grain habitats in Turkey. World Journal of Microbiology and Biotechnology **21** (3): 285-292.

- Beron, C. M., L. Curatti and G. L. Salerno. 2005. New strategy for identification of novel *cry* types genes from *Bacillus thurigiensis* strains. *Applied and Environmental Microbiology* 71(2): 761-765.
- Bravo, A., S. Likifvivatanavong, S. S. Gill and M. Soberon. 2011. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology 4 (7): 423-431.
- Bravo, A., S. Sarabia, L. Lopez, H. Ontiveros, C. Abraca, A. Oritiz, M. Oritiz, L. Lina, F. J. Villalobos and G. Pena. 1998. Characterization of *cry* genes in a Mexican *Bacillus thurigiensis* strain collection. *Applied and Environmental Microbiology* 64: 4965-4972.
- Crickmore, N., D. R. Zeigler, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, A. Bravo and D. H. Dean. 2010. Bacillus thuringiensis toxin nomenclature. http://www.biols. susx.ac.uk/Home/ Neil_Crickmore/Bt/index.html.
- Darsi, S., G. Divya Prakash and V. Udayasuriyan. 2010. Cloning and characterization of truncated *cry*1Ab gene from a new indigenous isolate of *Bacillus thuringiensis*. *Biotechnology Letters* 32: 1311-1315.
- Jara, S., P. Maduell and S. Orduz. 2006. Diversity of *Bacillus thuringiensis* strains in the maize and bean phylloplane and their respective soils in Colombia. *Journal of Applied Microbiology* **101** (1): 117-124.
- Kalman, S., K.L. Kiehne, J.L. Libs and T. Yamamoto. 1993. Cloning of a novel cry1C type gene from a strain of Bacillus thuringiensis subsp. Galleriae. Applied and Environmental Microbiology 59: 1131-1137.
- Kaur, S. 2000. Molecular approaches towards development of novel Bacillus thurigiensis biopesticides. World Journal of Microbiology and Biotechnology 64: 781-793.
- Kaur, S. 2006. Molecular approaches for identification and construction of novel insecticidal genes for crop protection. World Journal of Microbiology and Biotechnology 22: 233-253.
- Kaur, S. and G. T. Gujar. 2004. Contemporary approaches for genetically engineered insect resistant transgenic crops. p. 492-516. In Dhaliwal G.S. and Singh R. (eds.) Host Plant resistance to Insects: Concepts and Applications. Panima Publishing Corporation, New Delhi.
- Kaur, S. and A. Singh. 2000a. Distribution of *Bacillus thurigiensis* isolates in different soil types from north India. *Indian Journal* of Ecology 27: 52-60.
- Kaur, S. and A. Singh. 2000b. Natural occurrence of *Bacilus thuringiensis* in leguminous phylloplanes in the New Delhi region of India. *World Journal of Microbiology & Biotechnology* 16: 679-682.
- Martinez, C. and P. Caballero. 2002. Contents of cry genes and insecticidal toxicity of *Bacillus thuringiensis* strains from terrestrial and aquatic habitats. *Journal of Applied Microbiology* 92: 745-752.
- Meadows, M. P., D. J. Ellis, J. Butt, P. Jarrett and H. D. Burges. 1992. Distribution, frequency, and diversity of *Bacillus thurigiensis* in an animal feed mill. *Applied and Environmental Microbiology* 58: 1344-1350.
- Meena, R. K., G. G. K Kumari, A. Govind, G. T. Gujar and S. Kaur.

61

©2014 New Delhi Publishers. All rights reserved

2012. Screening of *Bacillus thuringiensis* isolates recovered from diverse habitats in India for the presence of *cry*1A-type genes and cloning of a *cry*1Ac33 gene toxic to *Helicoverpa armigera* (American bollworm). *Asian Journal of Biotechnology* **4**: 53-69.

- Nester, E. W., L. S. Thomashow, M. Metz, and M. Gordon. 2002. 100 years of *Bacillus thuringiensis*: A critical scientific assessment. American Society for Microbiology, 18 pp Washington, D.C. http://www.asmusa.org
- Porcar, M. and V. M. Juarez-Perez. 2003. PCR based identification of Bacillus thuringiensis pesticidal crystal genes, FEMS Microbiology Reviews 26: 419-432.
- Rolle, R. L., A. O. Ejiofor and T. L. Johnson. 2005. Determination of the plasmid size and location of ä-endotoxin genes of *Bacillus thuringiensis* by pulse field gel electrophoresis. *African Journal* of *Biotechnology* 4(7): 580-585.
- Romeis, J., M. Meissle and F. Bigler. 2006. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nature Biotechnology 24: 63-71.
- Schnepf, H. E. and H. R. Whiteley. 1981. Cloning and expression of the *Bacillus thuringiensis* crystal protein gene in *Escherichia* coli. Proceedings of the National Academy of Sciences USA 78: 2893-2897.

- Schnepf, H. E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baurn, J. Feitelson, D. R. Zeigler and D. H. Dean. 1998. Bacillus thurigiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews 62: 775-806.
- Shelton, A. M., J. Z. Zhao, and R. T. Roush. 2002. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. *Annual Review of Entomology* 47: 845-881.
- Thammasittirong, A. and T. Attathom. 2008. PCR-based method for the detection of *cry* genes in local isolates of *Bacillus thuringiensis* from *Thailand. Journal of Invertebrate Pathology* **98** (2): 121–126.
- Uribe, D., W. Martinez and J. Ceron. 2003. Distribution and diversity of cry genes in native strains of *Bacillus thuringiensis* obtained from different ecosystems from Colombia. *Journal of Invertebrate Pathology* 82: 119-127.
- Xue, J., G. M. Liang, N. Crickmore, H. Li, K. He, F. Song, X. Feng, D. Huang and J. Zhang. 2008. Cloning and characterization of a novel cry1A toxin from *Bacillus thuringiensis* with high toxicity to the Asian corn borer and other lepidopteran insects. *FEMS Microbiology Letters* 280: 95-101.
- Zhao, J. Z., J. Cao, Y. X. Li, H. L. Collins, R. T. Roush, E. D. Earle and A. M. Shelton. 2003. Transgenic plants expressing two *Bacillus thuringiensis* toxins delay insect resistance evolution. *Nature Biotechnology* 21: 1493–1497.