M Intl. J. Bioinformatics and Biological Sci.: (V. 5 n.2, p. 91-116): December 2017

©2017 New Delhi Publishers. All rights reserved DOI: 10.5958/2321-7111.2017.00012.9

Molecular Docking Studies of Medicinal Compounds against Aldose reductase Drug Target for Treatment of Type 2 **Diabetes**

Pratistha Singh^{*1}, Preeti Yadav², V.K. Singh³ and A.K. Singh¹

¹Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India

²School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India ³Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India

*Corresponding author: pratistha123456@gmail.com

ABSTRACT

Type 2 Diabetes is a disease that manifests from combined effect of genetic and environmental stress on multiple tissues over a period of time. An enzyme, Aldose Reductase play an important role in oxidative stress and Diabetic Mellitus was selected as a target protein for *in silico* screening of suitable herbal inhibitors using molecular docking. In the present work best screened ligands Ajoene, 3-O-methyl-D-chiro-inositol (D-pinitol), Butein, Leucopelargonidin, Nimbidinin, Tolbutamide and Coumarin were used for docking calculation and isolated from Allium sativum, Glycine max, Butea monosperma, Thepsia populena, Ficus benghalensis, Azardirachta indica, Nelumbo nucifera, Aegle marmelos respectively. Herbacetin and Quercetin from *Thepsia populena*. The residues Gly¹⁸, Thr¹⁹, Trp²⁰, Lys²¹, Asp⁴³, Val⁴⁷, Tyr⁴⁸, Gln⁴⁹, Asn⁵⁰, Lys⁷⁷, His¹¹⁰, Trp¹¹¹, Thr¹¹³, Ser¹⁵⁹, Asn¹⁶⁰, Asn¹⁶², His¹⁶³, Gln¹⁸³, Tyr²⁰⁹, Ser²¹⁰, Pro²¹¹, Leu²¹², Gly²¹³, Ser²¹⁴, Pro²¹⁵, Asp²¹⁶, Ala²⁴⁵, Ile²⁶⁰, Val²⁶⁴, Thr²⁶⁵, Arg²⁶⁸, Glu²⁶¹, Asn²⁶², Cys²⁹⁸, Ala²⁹⁹ and Leu³⁰⁰ were found conserved with binding site 1, which is major active site involved in interaction. In comparison with all screened ligands only 7 ligands (Butein, Herbacetin, Quercetin, Leucopelargonidin, Nimbidinin, Tolbutamide and Coumarin) were observed as best suitable ligands, which can be prominent herbal compounds for diabetes treatment.

Keywords: Type 2 diabetes, In-silico docking, Aldose reductase, anti-diabetic compounds, medicinal plants

Diabetes is presumably one of the oldest diseases known to world as an Egyptian manuscript, written about 3000 years ago, mentions about this disease (Ahmed, 2002). Diabetes is a disease in which blood glucose level of body get elevated, either because of inadequate insulin production, or because of improper response of body's cells to insulin, or both. High blood glucose may often lead to problems such as heart disease, stroke, kidney disease, eye problems, dental problem, nerve damage, foot problems etc. The characteristic symptoms of diabetes are polyuria,

polydipsia, poly-phagia, pruritus and unexpected weight loss etc. Diabetes is also associated with increased induction of oxidative stress in cells which often results into higher levels of oxidized proteins, DNA and lipids (Wiernsperger, 2003). Under high level of glucose, oxidative stress induction may arise by several mechanisms. First, by disruption of electron transport chain in mitochondria that leads to excessive generation of superoxide anions (Nishikawa et al., 2000). Second, by auto-oxidation of glucose (Wolff and Dean, 1987). Third, by advanced

glycation that leads to Advanced Glycation End Product (AGE) formation which in turn binds with receptor of AGE and accelerates Reactive Oxygen Species (ROS) formation (Schmidt *et al.*, 1994). Fourth, through Polyol Pathway (Drel *et al.*, 2008). Further, there are three potential mechanisms by which the polyol pathway contributes to oxidative stress i.e. by Aldose Reductase (AR) dependent pathway which depletes NADPH and subsequently reduces Glutathione (Cheng and Gonzalez, 1986) during conversion of sorbitol to fructose by Sorbitol dehydrogenase (Morre *et al.*, 2000) and by conversion of fructose to potent non-enzymatic glycation agents, fructose-3-phosphate and 3-deoxyglucosone (Hamada *et al.*, 1996).

At the beginning of 21st century, 171 million people were affected by diabetes and this toll is expected to burgeon to 366 million by 2030. It is further anticipated that prevalent type 2 DM in adults may surge in the next two decades across the globe and such surge in the incidents of disease in patients aged between 45 and 64 years, may be more prominent among developing countries (Wild *et al.*, 2004).

Diabetes is broadly categorized as, type 1 diabetes, type 2 diabetes and gestational diabetes. In 1936, type 1 diabetes was lucidly distinguished from type 2 DM. Type 1 Diabetes (insulin-dependent diabetes mellitus) is a chronic autoimmune disease caused both genetic and environmental factors, which over the time results into an immune-mediated destruction of pancreatic β -cells resulting into loss of its functions and further leads to symptomatic diabetes and longlasting dependence on external insulin doses. Type 1 diabetes often causes visual impairment and terminal blindness (Eisenbarth, 1986; Atkinson et al., 2014). In 1988, type 2 DM was first described as a component of metabolic syndrome (Kudva and Butler, 1997). It is characterized by a progressive decline in betacell function, impaired insulin secretion and chronic insulin resistance (Defronzo 1987; Maitra et al., 2005). About 90 % of people have type 2 diabetes.

The toll of the people living with type 2 DM is surging rapidly across the globe and low and middle-

income countries accounts for with 80% of total Type 2 DM cases. It is estimated that DM was the cause of loss 4.6 million lives globally in 2011(Burke et al., 1999). There were 69.1 million cases of diabetes in India in 2015 (International Diabetes Federation). Obesity is a major risk factor for the development of type 2 diabetes (Center for Disease Control and Prevention (1980-1994); Ludvik et al., 1995) and may confer type 2 diabetes through the mechanism of linked to insulin resistance (Spencer et al., 2008). Diabetes mellitus also elevates chances of coronary heart disease and ischemic stroke (Sanker et al., 2008). Type 2 DM results from interaction between genetic, environmental and behavioral risk factors (Chen et al., 2011, Center for Disease Control and prevention 2004). It is associated with various forms of both short- and long-term complications, which often leads to premature death of the patients. Since, type 2 DM is most common of all types of diabetes and its insidious onset along with late recognition of disease, hence it causes increased morbidity and mortality, especially in developing countries or resource-poor countries like Africa (Azevedo and Alla, 2008). Gestational diabetes develops in some women when they are pregnant. Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance with onset or first recognition during pregnancy (Metzer and Coustan, 1998). According to analysis by the CHYPERLINK "http://www.cdc. gov/pcd/issues/2014/13_0415.htm" enters for Disease Control and pHYPERLINK "http://www.cdc.gov/ pcd/issues/2014/13_0415.htm" revention performed in 2014, the prevalence of gestational diabetes is high.

In mammalian cells, under normal glucose concentration (3.8–6.1mmol/L), a cytoplasmic enzyme known as hexokinase, phosphorylates 97 percent of cellular glucose and commits them for glycolytic pathway (Morrison *et al.*, 1970) while rest 3 percent of glucose enters polyol pathway. However, percentage of glucose entering polyol pathway increases to 30 percent under elevated glucose concentration (>7 mmol/L) (Yabe-Nishimura, 1998). Polyol pathway is a minor pathway for glucose metabolism in most of the tissues but under hyperglycemic condition, it plays a pivotal role in tissues having insulin independent glucose metabolism. In polyol pathway, an enzyme known as AR catalyses the reduction of glucose to sorbitol which is the rate limiting step of pathway. AR (EC 1.1.1.21) is a monomeric, NADPdependent oxidoreductase enzyme. It is a member of aldo-keto reductase multigene superfamily (Petrash, 2004). In the first step of polyol pathway, AR catalyzes the reduction of glucose to sorbitol in nicotinamide adenosine dinucleotide phosphatedependent manner that often leads to excessive accumulation of intracellular reactive oxygen species (ROS) causing oxidative stress in various tissues of heart, vasculature, neurons, eyes and kidneys (Fig. 1). Accumulation of sorbitol in the body causes various complications including cataract, neuropathy, nephropathy and cardiovascular disease and increases diabetic complication (Schrijvers *et al.*, 2004). Inhibitors of aldose reductase e.g. sorbinil, have shown to prevent diabetic complications, thus indicating possible role of sorbitol in diabetes (Jennings et al., 1990). But the clinical efficacy of AR inhibitors is relatively low. The possible roles of AR in diabetes associated complications, AR has become a suitable target for drugs and low clinical efficacy of current AR inhibitors, encourages many person to find a drug of higher clinical efficacy.

Nowadays, medicinal plants are gaining importance across the globe for their possible roles blood glucose regulation and mitigating the effects of diabetes. There are several medicinal plants that contain some specific compounds *viz*. glycosides, alkaloids, terpenoids, flavonoids, carotenoids *etc.*, which have anti-diabetic, anti-hyperlipidemic, antihyperglycemic properties (Malviya *et al.*, 2010). Such medicinal plants are readily available and are thought to elicit low side effects. Further, plants have always been an ideal source of drugs. The present article important anti-diabetic compounds were collected to screen best suitable inhibitors for AR.

MATERIALS AND METHODS

Structure Retrieval & Verification

AR is a key target to control diabetes complications. For AR structure retrieval PDB database was used.

Fig. 1: Role of Aldose Reductase (AR) in hyperglycemia-induced oxidative stress. AR competes with glutathione reductase (GR) for their co-factor NADPH, leading to a decrease in Glutathione. Increased NADH causes NADH oxidase (NOx) to produce ROS. Fructose-3-phosphate (F-3-P) and 3-deoxyglucosone (3-DG), metabolites of fructose, increases AGE formation. AGE and binding of AGE to receptor of AGE (RAGE) increases oxidative stress (Chung *et al.*, 2003).

The PDB database is a major database in area of structural biology and computational biology for research and education (Berman, 2008; Laskowski *et al.*, 1997). For structural verification of retrieved AR structure, RAMPAGE and PDBSum server were used (Kim *et al.*, 2016).

Active site identification

For active site residues identification CDD BLAST was used (Marchler *et al.*, 2012). CDD is conserved Domain Database for identification of functional site of protein sequence using alignment with available structure models in database. Further Metapocket server was used for identification of probable active sites. Identification of active sites predicted on the basis of four methods *viz*. LIGSITE(cs) (Hendlich *et al.*, 1997), PASS (Brady *et al.*, 2005), Q-SiteFinder, (Laurie and Jackson, 2005) and SURFNET (Laskowski,1995). Discovery Studio 3.0 developed by Accelrys, was also used for visualization of three dimensional complex structures and active site residues visualization (http://accelrys.com/).

Ligands retrieval and assessment

The anti-diabetic ligands were collected on the basis of literature mining (Mamun or Rashid et al., 2014; Vikrant and Sharma, 2011; liu et al., 2006; Eidi et al., 2006; Frode and Medeiros., 2008; Bnouham et al., 2006; Ayodhya et al., 2010; Singh et al., 2011; Chauhan et al., 2010). The retrieval of anti-diabetic ligands were done with Pubchem compound database (Kim et al., 2016). For drug likeness analysis Lipinski's rule of five (RO5) was done using Lipinski Filters - SCFBio. According to the rules, a compound is more likely to act as a drug if it complies with two or more rules i.e. molecular mass less than 500 Dalton, high lipophilicity (expressed as cLogP less than 5), five or less hydrogen bond donors (HBD), ten or less hydrogen bond acceptors (HBA) and Molar refractivity between 40-130 (Lipinski et al., 2001, 2004). FAF-Drug3 (Free ADME-Tox Tool version 3.0) is a server used for *in-silico* screening, which perform computational prediction of ADEM-TOX (Adsorption, Distribution, Metabolism, Excretion,

and Toxicity) properties and help in selection before chemical synthesis (Cumming *et al.*, 2013).

Docking calculation and visualization

The docking calculation was done using YASARA Autodock VINA tool. Yet Another Scientific Artificial Reality Application (YASARA) is user friendly software for molecular graphics, modeling and simulation (Krieger and Vriend, 2014). The docking analyses of potent ligands were visualized using Discovery Studio 3.0.

RESULTS AND DISCUSSION

Receptor protein selection for screening of natural anti-diabetic compounds

The AR protein structure (PDBID: 1US0) was used for structural verification (Fig. 2; Howard et al. 2004). Structural verification revealed that selected AR protein structure have 98.7% residues in favoured region and 1.3% residues in favoured region residues in allowed region and no residues in outlier region (Fig. 2). PDBSum PROCHECK statistics mainly Ramachandran Plot statistics resulted that 90.6% residues in most favoured regions [A, B, L] and 9.4% residues in additional allowed regions [a, b, l, p]. There are no residues were found in generously allowed regions [~a, ~b, ~l, ~p] and Disallowed regions [XX]. For a good quality model 90% residues should be in the most favoured regions [A, B, L]. In this case 90.6% residues was found in most favoured regions [A, B, L], which indicated the good quality of selected model. Further model was used for active site and active site residues identification for docking calculation with selected best natural anti-diabetic compounds.

Active site identification

For active site identification CDD BLAST was used (Fig. 2). MetaPocket server was used for 3 potential active site prediction and residues identification (Table 1). The residues Gly¹⁸, Thr¹⁹, Trp²⁰, Lys²¹, Asp ⁴³, Val⁴⁷, Tyr⁴⁸, Gln⁴⁹, Asn⁵⁰, Lys⁷⁷, His¹¹⁰, Trp¹¹¹, Thr¹¹³,

Feature 1		### # # #
1M9H A	5	.[1].IVL.[2].GNSIPQLGYGVY.[9].AVEEALEVGYRHIDTAAIY.[2].EEGVGAAIA.[7].DLFITTKL 76
auerv	3	.[1].RIL.[3].GAKMPILGLGTW.[9].AVKVAIDVGYRHIDCAHVY.[2].ENEVGVAIO.[11].ELFIVSKL 79
1MT3 C	7	
1010_0	, '-	
1K10_A		.[1].VKL.[2].GHTPHYLGPHIT.[12].VIKLATEAGTATIDSALT.[2].EEQVGLAI.[11].DIFTISAL 65
gi 58263248	6	.[1].LKL.[2].GVVAPQIGF <mark>GIW</mark> .[9].AVEEAIKVGYRHI <mark>D</mark> CALI <mark>Y</mark> .[8].YGIVAQGIK.[7].DLFLVS <mark>K</mark> L 83
gi 24657054	8	.[1].FKH.[2].GTHIQGIGL <mark>GTF</mark> .[9].AVLHAIDVGYRHI <mark>D</mark> TAYF <mark>Y</mark> .[2].EAEVGAAVR.[11].DIFITT <mark>K</mark> L 83
gi 56756128	1	.[1].EPL.[4].GRSIPVIGLGTW.[9].AVKKALEIGYRHLDCAYVY.[2].EAEIGEALE.[11].DIFITSKL 78
gi 57529654	7	.[1].VAL.[2].GOKIPLIGLGTW.[9].AVKYALSVGYRHVDCAAAV.[2].EAEIGDAFO.[12].DLFVTSKL 83
gi 17537077	4	
gi 116702244	6	[1] TTE [2] GYTTDALGLOTH [0] AVYDATDTGYPHTDCALW [2] GYCVGTALT [11] DLETTSU 91
gi 110765544	0	.[1].IIF.[2].GKTIPALGLOIM.[9].AVKDAIDIGTATIPCATVI.[2].EKEVGTALI.[II].DEFIIS
Feature 1		## ## #
1M9H A	77	.[9].PAAAIAES.[13].VHWPT.[8].AWEKMIELRAAG.[1].TRSIGVSNH.[2].PHLERIVA.[4].VPAVNO 161
query	80	[9] VKGACOKT [13] THMPT [26] TWAAMEELVDEG [1] VKATGISNE [2] LOVENTIN [6] KPAVNO 184
	00	[0] VETALNET [42] THENT [22] THAN RELEVANCE [1] TREEVANCE [2] ALLELE [3] AND A DA
1015_0	00	[9] VERMENT, [13] THEFT, [32] THEATEREVENE [1] TRADUCTOR [3] ROLEVEN [4], REALLY [4]
1RY0_A	86	.[9].VRPALENS.[13].1 <mark>HS</mark> PM.[26].IWEAMEKCKDAG.[1].AKSIGV <mark>SN</mark> F.[2].RQLEMILN.[6].KPVCNQ 190
gi 58263248	84	.[9].VEADLDTS.[13].I <mark>HW</mark> PV.[28].TWKELIRISKET.[2].VKAIGV <mark>SN</mark> F.[2].ELLEKLIK.[4].VPTMNQ 189
gi 24657054	84	.[9].VEYACRKT.[13].I <mark>HW</mark> PF.[28].TWGAMEKLVDLG.[1].TKSIGV <mark>SN</mark> F.[2].EQLTRLLA.[4].KPIHN <mark>Q</mark> 188
gi 56756128	79	.[9].VRKACEET.[13].IHWPV.[26].TWKEMEKLVDEG.[1].VKSIGLSNF.[2].RQIQNILE.[4].KPANLQ 181
gi 57529654	84	
gi 17537077	20	
gi 1/55/0//	00	[6] WORNERS [43] THERE [33] THERE CARRANGE [4] WORNERS [4] WORNERS [4] WORNERS [4]
gi 110783344	82	.[9].VRGALLKS.[13].1 <mark>mW</mark> PQ.[20].1WKALEPLVGEG.[1].VRSIGL <mark>5M</mark> F.[2].KQVDRVLQ.[4].KPVVW <mark>Q</mark> 184
Feature 1		******* * ***** * ***
1M9H Δ	162	
query	195	TECHEVITO [2] LTOYCOSK [1] TW/TAVSDIGS [20] TMOVITEEDMO [2] LV/TEKSVTEERTAENEK 275
	100	VEHICLE OF CONTRACT OF
1M13_C	192	VEHHPYLQQ.[2].LIEFAQKA.[1].VIIIAYSSFOP.[33].PAEVLLRWAAQ.[2].IAVIPKSNLPERLVQNKS 280
1RY0_A	191	VECHPYFNR.[2].LLDFCKSK.[1].IVLVA <mark>YSALGS</mark> .[30].P <mark>A</mark> LIALRYQLQ.[2].VVV <mark>LAKS</mark> YNEQ <mark>R</mark> IR <mark>QN</mark> VQ 282
gi 58263248	190	IECHPSLIQ.[2].LFKYCKEK.[1].IVITA <mark>YSPLGN</mark> .[24].P <mark>A</mark> QVLINWAAH.[2].FAV <mark>IPKS</mark> VTPS <mark>R</mark> IK <mark>SN</mark> FE 275
gi 24657054	189	IEVHPALDQ.[2].LIALCKKN.[1].ILVTA <mark>FSPLGR</mark> .[26].IAQVVIRYVIE.[2].TIPLPKSSNPKRIEENFN 276
gi 56756128	182	IETHANEPN, [2], LVEYAOSV, [1], LTVTAVAPLGS, [26], PAOVLLRYLLO, [2], LIVVPKSVTEKRIEENEO, 269
gi 57520654	187	VECHOVIAO [2] LTAHCOKE [1] LVVTAVSDIGS [20] PNOTLLENDAO [2] VVTTEKSVTBARTIONIO 277
gi 17527077	100	VELIDATO [2] LECOVER [1] TVALOSCILOS [20] DETENDEN [2] LECTROPORTENIA 274
gi 1/55/0//	105	VECHNYLND [2] LIKETCKEK, [1] LIVING DECM, [20] PAQUELING VECKNYLND [2] LINETDECK 274
gi 110/83344	185	VECHPYLNQ.[2].LKAFCSAK.[1].LKLIA <mark>TSPLGS</mark> .[29].PAQVLIKYQID.[2].NVV <mark>IPKS</mark> VIKS <mark>K</mark> IA <mark>SN</mark> FD 275
		10 20 30 40 50 60 70 80
Feature 2		# #
1M9H A	5	SIVLndGNSIPOLGYGVYkvppadtORAVEEALEVGYRHIDTAAIYgnEEGVGAAIAasgiard 68
querv	3	sRILln-nGAKMPILGLGTWksppgavteAVKVAIDVGYRHIDCAHVygnENEVGVAIOeklreg-vykre 71
1MI3 C	7	DIKLssGHLMPSIGFGCWklanataGEOVYOAIKAGYRLFDGAEDYgnEKEVGDGVKraideg-lvkre 74
1RY0 A	7	CVKLndGHFMPVLGFGTYappevprskaLEVTKLAIEAGFRHIDSAHLYnnEEQVGLAIRskiadg-svkre 77
gi 58263248	6	TLKLnnGVVAPQIGFGTWqaapgevEKAVEEAIKVGYRHIDCALIYrvfdatgvYGTVAQGIKasgvprk 75
gi 24657054	8	YFKHndGTHIQGIGLGTFastegdcERAVLHAIDVGYRHIDTAYFYgnEAEVGAAVRkkiaeg-vikre 75
gi 56756128	1	MEPLkmnnGRSIPVIGLGTWnsppgevGAAVKKALEIGYRHLDCAYV <mark>Y</mark> rnEAEIGEALEnalnsl-rlkre 70
gi 57529654	7	FVALynGQKIPLIGLGTWksepgqvKEAVKYALSVGYRHVDCAAA <mark>Y</mark> snEAEIGDAFQecvgpnkvikre 75
gi 17537077	4	SLKLnsGYSIPAIGLGTWqskpgevAAAIKTAVAAGYRHIDCAHV <mark>Y</mark> qnQKEVGEALKeildeg-kvkre 71
gi 116783344	6	VITFnnGKTIPALGLGTWkskpgevTQAVKDAIDIGYRHIDCAFV <mark>Y</mark> gnEKEVGTALTaklaeg-vvkre 73
		90 100 110 120 130 140 150 160
		*
Feature 2		#
1M9H_A	69	DLFITTKLwndrhdgdEPAAAIAESLAKLaLDQVDLYLVHWPTpaad
query	72	ELFIVSKLwctyhekglVKGACQKTlsdlkldyldlylIFWPTgfkpgkeffpldesgnvvpsdtnildTWAAM 145
1MI3_C	75	EIFLTSKLwnnyhdpkNVETALNKTLADLkVDYVDLFLI <mark>H</mark> FPIafkfvpieekyppgfycgdgnnfvyedvpileTWKAL 154
1RY0_A	78	DIFYTSKLwstfhrpeLVRPALENSLKKAqLDYVDLYLI <mark>H</mark> SPMslkpgeelsptdengkvifdivdlctTWEAM 151
gi 58263248	76	DLFLVSKLwnnshrpeKVEADLDTSLKQLgTDYLDVYLI <mark>HWPV</mark> pfapgdnlfpktedgkvaidwdgpsvvdTWKEL 151
gi 24657054	76	DIFITTKLwcnfhepeRVEYACRKTLKNIgLDYVDLYLI <mark>H</mark> WPFsykyrgdnelipkdangevelvdidyldTWGAM 151
gi 56756128	71	DIFITSKLwntffrpeHVRKACEETLKNLrLNYLDLYLI <mark>HWPV</mark> plkhggdlfptdsngqlcldnvphedTWKEM 144
gi 57529654	76	DLFVTSKLwntkhhpeDVEPALRKTLADLkLDYLDLYLMHWPHafergdnlfpknpdgtmrydytdykdTWKAM 149
gi 17537077	72	ELFITSKVwntfhseaKAHENIDIILSDLqLSYVDLMLIHWPQgyaegaelfpagengkmrysdvdyleTWKAF 145
gi 116783344	74	DLFITSKLwntfhrpdLVRGALLKSLENLnLKYLDLYLIHWPQaykedgelfptdeagkiqfsdvdyvdTWKAL 147
		170 180 190 200 210 220 230 240
		*

Fig. 2: Active site residues identification using CDD BLAST

Ligand binding site no.	Active site residues	Binding site residues
1	Gly ¹⁸ , Thr ¹⁹ , Trp ²⁰ , lys ²¹ , Asp ⁴³ , Val ⁴⁷ , Tyr ⁴⁸ , Gln ⁴⁹ , Asn ⁵⁰ , Glu ⁵¹ , Asn ⁵² , Glu ⁵³ , Lys ⁷⁷ , lys ⁹⁴ , Asp ⁹⁸ , His ¹¹⁰ , Trp ¹¹¹ , Thr ¹¹³ , Ser ¹⁵⁹ , Asn ¹⁶⁰ , Asn ¹⁶² , His ¹⁶³ , Gln ¹⁸³ , Lys ¹⁹⁴ , Leu ¹⁹⁵ , Tyr ²⁰⁹ , Ser ²¹⁰ , Pro ²¹¹ , Leu ²¹² , Gly ²¹³ , Ser ²¹⁴ , Pro ²¹⁵ , Asp ²¹⁶ , Ala ²⁴⁵ , Ile ²⁶⁰ , Pro ²⁶¹ , Lys ²⁶² , Ser ²⁶³ , Val ²⁶⁴ , Thr ²⁶⁵ , Arg ²⁶⁸ , Glu ²⁶¹ , Asn ²⁶² , Cys ²⁹⁸ , Ala ²⁹⁹ ,	Trp ²⁰ , lys ²¹ , Pro ²¹⁸ , Trp ²¹⁹ , Trp ⁷⁹ , Cys ⁸⁰ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹ , Ala ²⁹⁹ , Cys ²⁹⁸ , His ¹¹⁰ , Val ⁴⁷ , Tyr ⁴⁸ , Asn ¹⁶⁰ , Tyr ²⁰⁹ , Ser ¹⁵⁹ , Gln ¹⁸ , Ser ²¹⁰ , Lys ⁷⁷ , Asp ⁴³ , Ile ²⁶⁰ , Thr ¹⁹ , Gly ¹⁸ , Lys ²⁶² , Ser ²¹⁴ , Pro ²¹¹ , Asp ²¹⁶ , Leu ²¹² , Pro ²¹⁵ , Pro ²⁶¹ , Leu ²²⁸ , Arg ²⁶⁸ , Ser ²⁶³ , Asn ²⁷² , Ala ²⁴⁵ , Glu ²⁷¹ , Thr ²⁴³ , Thr ²⁴⁴ , Glu ²²⁹ , Ser ²²⁶ , Val ²⁶⁴ , Thr ²⁶⁵ , Val ²⁹⁷ , Ser ³⁰² , Leu ¹²⁴ , Leu ³⁰¹ , Phe ³¹¹ , Pro ³¹⁰ , Gln ⁴⁹ , Phe ¹²¹ , His ⁴⁶ , Leu ¹⁰⁸ , Val ¹³⁰ , Gly ²¹³ , Glu ²⁶⁷ , Asn ⁵⁰ , Ser ²²
2	Leu ³⁰⁰	Phe ¹⁶¹ , Asn ¹⁶² , Gln ¹⁹² , Leu ¹⁹⁵ , Arg ²⁹⁶ , Pro ³¹⁰ , Phe ³¹¹ , His ¹⁶³ , Lys ¹⁹⁴ , His ³¹² , Leu ¹⁹⁰ , Asn ²⁹⁴ , Glu ¹⁹³ , Asn ²⁹² , Asn ¹⁶⁰ , Ile ¹⁸⁴ , Glu ¹⁸⁵ , Trp ¹¹¹ , Tyr ²⁰⁹ , Tyr ³⁰⁹ , Leu ¹⁶⁴ , Glu ³¹³ , Thr ¹⁹¹ , Trp ²⁹⁵ , Arg ²⁹³
3		His ¹⁶³ , Lys ¹⁹⁴ , Leu ¹⁹⁵ , Tyr ¹⁹⁸ , Glu ¹⁹³ , Gln ¹⁹⁷ , Ser ²⁰¹ , Gln ²⁵⁴ , Arg ²⁵⁵ , Met ²⁸⁵ , Leu ²⁸⁹ , Ile ¹⁹⁶ , Gln ²⁰⁰ , Ser ²⁸² , Leu ²⁸⁰ , Ser ²⁸¹ , Glu ²⁷⁹ , Leu ¹⁹⁰ , Thr ¹⁹¹ , Gln ¹⁹² , Asn ²⁹² , Asn ²⁹⁴ , Asn ¹⁶² , Phe ¹⁶¹ , Arg ²⁹⁶

Table 1: The potential 3 ligands binding sites in AR protein (PDBID: 1US0)

Ser¹⁵⁹, Asn¹⁶⁰, Asn¹⁶², His¹⁶³, Gln¹⁸³, Tyr²⁰⁹, Ser²¹⁰, Pro²¹¹, Leu²¹², Gly²¹³, Ser²¹⁴, Pro²¹⁵, Asp²¹⁶, Ala²⁴⁵, Ile²⁶⁰, Val²⁶⁴, Thr²⁶⁵, Arg²⁶⁸, Glu²⁶¹, Asn²⁶², Cys²⁹⁸, Ala²⁹⁹ and Leu³⁰⁰ were found conserved with binding site 1, which is major active site to study docking calculation.

Fig. 3: 3-D structure of Aldose Reductase (AR)

Ligands retrieval and assessment

Collection of 49 anti-diabetic compounds from medicinal plants was collected using literature survey (Table 2; 3). The natural medicinal compounds were collected from anti-diabetic plants. On the basis of Lipinski filter analysis total 25 compounds out of 49 were selected, which were following Lipinski rules of 5 (Table 4). Screening of suitable natural compounds was done on the basis of drug likeness, absorption, distribution, metabolism, excretion and toxicity profile analysis. Further screened 25 compounds were taken for ADEM-TOX (Adsorption, Distribution, Metabolism, Excretion, and Toxicity) analysis using FAF-Drug3 (Table 5).

Docking calculation and visualization

Docking analysis between receptor (AR) and screened ligands (Butein, (Herbacetin, Quercetin) Leucopelargonidin, Nimbidinin, Tolbutamide and Coumarin) were performed using YASARA tool. Interactions were calculated on the basis of Binding Energy(kcal/mol), Dissociation Constant [pM] and Contacting receptor residues (Table 6; 7). The residues Gly¹⁸, Thr¹⁹, Trp²⁰, Lys²¹, Asp ⁴³, Val⁴⁷, Tyr⁴⁸, Gln⁴⁹, Asn⁵⁰, Lys⁷⁷, His¹¹⁰, Trp¹¹¹, Thr¹¹³, Ser¹⁵⁹, Asn¹⁶⁰, Asn¹⁶², His¹⁶³, Gln¹⁸³, Tyr²⁰⁹, Ser²¹⁰, Pro²¹¹, Leu²¹², Gly²¹³,

Sl. No.	Plant name	Common name	Isolation source	Compounds	References
1	Allium sativum	Garlic	Root	Ajoene	(Mamun or Rashid <i>et al.</i> ,2014; Vikrant and Sharma, 2011; liu <i>et al.</i> , 2006; Eidi <i>et al.</i> , 2006; Frode and Medeiros, 2008; Bnouham <i>et al.</i> , 2006; Ayodhya <i>et al.</i> , 2010; Singh, 2011)
2	Abelmoschus esculentus	Gumbo,	Fruit	Gum	(Mamun or Rashid <i>et al.</i> ,2014; Vikrant and Sharma, 2011; liu <i>et al.</i> , 2006; Eidi <i>et al.</i> , 2006; Frode and Medeiros, 2008; Bnouham <i>et al.</i> , 2006; Ayodhya <i>et al.</i> , 2010; Singh, 2011; Sabitha <i>et al.</i> , 2011)
3	Aegle marmelos	Golden apple	Leaf, Seed , Fruit	Coumarin, Aegeline,	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma, 2011; liu <i>et al.</i> , 2006; Eidi <i>et al.</i> , 2006; Frode and Medeiros, 2008; Bnouham <i>et al.</i> , 2006; Ayodhya <i>et al.</i> , 2010; Singh, 2011; Kesari <i>et al.</i> , 2006)
4	Acacia arabica	India gum Arabic	Seed , bark	Polyphenol	Vikrant and Sharma, 2011; Makheswari <i>et al.</i> ,2012)
5	Azadirachta indica	Neem	Leaf ,Seed	Nimbidinin	(Vikrant and Sharma, 2011; Khosla et al., 2000)
6	Artocarpus heterophyllus	Jack Fruit	Fruit	Sapogenin	(Vikrant and Sharma, 2011; Chackrewarthy et al., 2010)
7	Aloe barbadensis	Barbados aloe	Leaf	Lophenol	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma, 2011; Liu <i>et al.</i> , 2006; Eidi <i>et al.</i> , 2006; Frode and Medeiros, 2008; Bnouham <i>et al.</i> , 2006)
8	Allium cepa	Onion	Bulb	Allypropyl disulphide	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma, 2011; liu <i>et al.</i> , 2006; Eidi <i>et al.</i> , 2006; Frode and Medeiros, 2008; Bnouham <i>et al.</i> , 2006; Kumari <i>et al.</i> , 1995)
9	Butea monosperma	Bastard teak	Fruit	Butein	Mamun or Rashid <i>et al.</i> , 2014; Makheswari <i>et al.</i> , 2012; Sharma and Garg, 2009)
10	Brassica Juncea	Musturd	Seed ,leaf	Isorhamnetin 3,7-diglucoside	(Mamun or Rashid <i>et al.</i> , 2014;Vikrant and Sharma, 2011; Liu <i>et al.</i> , 2006; Singh, 2011)
11.	Beta vulgaris	Ginger	Bulb	Polydextrose	(Mamun or Rashid <i>et al.</i> , 2014; Frode and Medeiros, 2008; Makheswari <i>et al.</i> , 2012)
12	Cucumis Metuliferus	Jelly Melon	Fruit	Beta-carotene	(Mamun or Rashid <i>et al.</i> , 2014; Makheswari <i>et al.</i> , 2012)
13	Capsicum frutescens	Chilli	Fruit	Capsaicin	(Mamun or Rashid <i>et al.</i> , 2014; Bnouham <i>et al.</i> , 2006; Tolan <i>et al.</i> , 2004)
14	Coccinia indica	Ivy-gourd	Fruit	Beta-amyrin, Lupeol	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma, 2011; Ayodhya <i>et al.</i> , 2010; Singh, 2011)
15	Cinnamomum zeylanicum	Cinnamon	Leaf, Bark	Cinnamaldehye	(Mamun or Rashid <i>et al.,</i> 2014;Vikrant and Sharma, 2011; Liu <i>et al.,</i> 2006; Makheswari <i>et al.,</i> 2012)
16	Curcuma longa	Turmeric	Root	Curcuminoid	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma, 2011; liu <i>et al.</i> , 2006; Honda <i>et al.</i> , 2006)
17	Coriandrum sativum	Coriander	Leaf	L-alanine	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma, 2011)
18	Carica papaya	Рарауа	Fruit	Saponin	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma, 2011)

Table 2: List of selected natural anti-diabetic compounds with plant scientific, common name and isolation source

10	0 1 11	T	F1	TT ' · 1	
19	Cassia auriculata	Tanners Cassia	Flower	Flavonoids	(Mamun or Rashid <i>et al.,</i> 2014; Ayodhya <i>et al.,</i> 2010; Hatapakki <i>et al.,</i> 2005)
20	Diospyros peregrine	Gaub persimmon	Fruit	Butelin	(Mamun or Rashid <i>et al.,</i> 2014)
21	Ficus benghalensis	Banyan	Bark	Leucopelargo- nidin	(Mamun or Rashid <i>et al.</i> , 2014; Ayodhya <i>et al.</i> , 2010; Cherian and Augusti, 1993)
22	Feronia elephantum	Wood apple	Fruit	Bergapten	(Mamun or Rashid <i>et al.</i> ,2014; Vikrant and Sharma, 2011)
23	Glycine max	Soya beans	Seeds	3-Omethyl-D- chiro-inositol	(Mamun or Rashid <i>et al.,</i> 2014; Kang <i>et al.,</i> 2006)
24	Gymnema sylvestre	Suger destroyer	Leaf	Gymnemic acid	(Mamun or Rashid <i>et al.,</i> 2014; Vikrant and Sharma., 2011; Makheswari and Sudarsanam, 2012)
25	Hordeum vulgare	Barley	Seed	Beta-glucan	(Mamun or Rashid <i>et al.</i> , 2014; Makheswari and Sudarsanam, 2012)
26	Jatropha curcas	Barbados Fruit	Whole Plant	Diterpene	(Mamun or Rashid <i>et al.</i> ,2014; Vikrant and Sharma., 2011; Makheswari and Sudarsanam, 2012)
27	Momordica balsamina	Balsam Tree	Fruit	Cucurbitacin, Saponin	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma., 2011)
28	Mangifera indica	Mango tree	Leaf, Steam, Bark ,Fruit	Mangiferin	(Mamun or Rashid <i>et al.,</i> 2014; Vikrant and Sharma., 2011; Makheswari and Sudarsanam, 2012; Ojewol, 2005)
29	Momordica charantia	Bitter melon	Whole plant	Momordicin,	(Mamun or Rashid <i>et al</i> 2014; Vikrant and Sharma., 2011; Makheswari and sudarsanam, 2012; Saxena <i>et al.</i> , 2004; Sekar <i>et al.</i> , 2005; Yadav <i>et al.</i> , 2005; Reyes <i>et al.</i> , 2006; Harinantenaina <i>et al.</i> , 2006; Reyes <i>et al.</i> , 2006)
30	Morinda citrifolia	Indian mulberry	Fruit	Steroid, Saponin	(Vikrant and Sharma., 2011)
31	Musa paradisiaca	Banana	Fruit	Pectin	(Mamun or Rashid <i>et al.,</i> 2014; Vikrant and Sharma, 2011; Makheswari and Sudarsanam, 2012)
32	Musa sapientum	Sweet banana	Flower	Steroid	(Mamun or Rashid <i>et al.,</i> 2014; Vikrant and Sharma, 2011)
33	Mentha piperita	Peppermint	Leaf	Vanadium	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma, 2011)
34	Nigella sativa	Roman coriander	Whole plant	Thymoquinone	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma, 2011)
35	Nelumbo nucifera	Sacred lotus	Flower	Tolbutamide	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma, 2011).
36	Psidium guajava	Guava	Leaf, Fruit	Pedunculagin, Strictinin	(Vikrant <i>et al.,</i> 2011; Ojewole, 2005)
37	Phyllanthus emblica	Indian gooseberry	Fruit	Tannic acid	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma., 2011; Makheswari <i>et al.</i> , 2012)
38	Rhus coriaria	Sicilian Sumac	Fruit	Nonanal	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant <i>et al.</i> , 2011)
39	Thespesia populnea	Portia tree	Fruit	Herbacetin, Qurecetin	(Mamun or Rashid <i>et al.,</i> 2014; Vikrant and Sharma., 2011; Makheswari and Sudarsanam., 2012)
40	Terminalia chebula	Chebulic myrobalan	Seed, Fruit	Palmitic acid	(Mamun or Rashid <i>et al.</i> , 2014; Vikrant and Sharma., 2011; Makheswari and Sudarsanam., 2012; Bnouham <i>et al.</i> , 2006; Nalamolu and Nammi, 2006)

41	Urtica dioica	Nettles	Leaf	Lectin	(Mamun or Rashid et al., 2014 ; Vikrant and Sharma,
					2011; Makheswari <i>et al.</i> , 2012)
42	Withania	Winter	Leaf	Withanolide	(Mamun or Rashid et al., 2014; Vikrant and Sharma,
	somnifera	cherry			2011)
43	Withania	Vegetable	Fruit	Esterase	(Mamun or Rashid et al., 2014; Vikrant and Sharma,
	coagulans	rennet			2011)
44	Xanthocercis	Nayal Tree	Leaf	Castanospermine	(Mamun or Rashid et al., 2014; Vikrant and Sharma,
	zambesiaca				2011; Makheswari <i>et al.</i> , 2012)
45	Zingiber officinale	Ginger	Bulb	Gingerol	(Mamun or Rashid et al., 2014; Vikrant and Sharma,
					2011; Bnouham et al., 2006; Kato et al., 2006)

Fig. 4: RAMPAGE statistics

Fig. 5: PROCHECK Ramachandran Plot and statistics obtained from PDBSum server

Sl. No.	Plant	Compounds	PubChem CID	Molecular Formula	Molecular Weight	Canonical SMILES
1	Allium sativum	Ajoene	5386591	$C_9H_{14}OS_3$	234.39 g/ mol	C=CCSSC=CCS(=O)CC=C
2	Abelmoschus esculentus	Gum	44134661	$\begin{array}{c} C_{10}H_{14}N_5\\ Na_2O_{12}P_3 \end{array}$	535.146 g/ mol	C1C(C(OC1N2C=NC3=C2N=CN=C3N) COP(=O)(O)OP(=O)([O-])OP(=O)(O)[O-]) O.[Na+].[Na+]
3	Aegle marmelos	Coumarin	323	$C_{9}H_{6}O_{2}$	146.145 g/ mol	C1=CC=C2C(=C1)C=CC(=O)O2
4	Aegle marmelos	Aegeline	15558419	C ₁₈ H ₁₉ NO ₃	297.354 g/ mol	C O C 1 = C C = C (C = C 1) C (C N C (= O) C=CC2=CC=CC=C2)O
5	Acacia Arabica	Polyphenol	996	C ₆ H ₆ O or C ₆ H ₅ OH	94.113 g/ mol	C1=CC=C(C=C1)O
6	Azadirachta indica	Nimbidinin	101306757	$C_{26}H_{34}O_{6}$	442.552 g/ mol	CC12COC3C1C(C(CC2O)O)(C4CC(=O) C5(C(CC=C5C4(C3O)C)C6=COC=C6)C)C
7	Artocarpus heterophyllus	Sapogenin	101281204	$C_{30}H_{46}O_4$	470.694 g/ mol	CC1(CC2C3=CCC4C(C3(CCC25CC1OC5=O) C)(CCC6C4(CC(C(C6(C)C)O)O)C)C)C
8	Aloe barbadensis	Lophenol	160482	C ₂₈ H ₄₈ O	400.691 g/ mol	CC1C(CC2(C1CC=C3C2CCC4(C-3CCC4(C))))
9	Allium cepa	Allyl propyl disulphide	16591	$C_{6}H_{12}S_{2}$	148.282 g/ mol	CCCSSCC=C
10.	Butea monosperma	Butein	5281222	$C_{15}H_{12}O_{5}$	272.256 g/ mol	C1=CC(=C(C=C1C=CC(=O)C2=C(C=C(C=C2) O)O)O)O
11	Brassica juncea	Isorhamnetin 3-7 diglucoside	4425935	$\mathrm{C_{13}H_{18}BrFN_{2}}$	301.203 g/ mol	CN1CCCN(CC1)CC2=C(C=CC=C2Br)F
12	Beta vulgaris	Polydextron	71306906	$C_{12}H_{22}O_{11}$	342.297 g/ mol	C(C1C(C(C(C(O1)OCC2C(C(C(O2)O)O)O) O)O)O)O)O
13	Cucumis metuliferus	Beta-carotene	5280489	$C_{40}H_{56}$	536.888 g/ mol	CC1=C(C(CCC1)(C)C) C=CC(=CC=CC(=CC=C(C)C=CC=C(C) C=CC2=C(CCCC2(C)C)C)C)C
14.	Capsicum frutescens	Capsaicin	1548943	$C_{18}H_{27}NO_{3}$	305.418 g/ mol	CC(C)C=CCCCCC(=O)NCC1=CC(=C(C=C1) O)OC
15	Coccinia indica	B-amyrin	73145	$C_{30}H_{50}O$	426.729 g/ mol	CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(C- CC(C5(C)C)O)C)C)C2C1)C)C
16	Cinnamomum zeylanicum	Cinnamaldehyde	637511	C ₉ H ₈ O	132.162 g/ mol	C1=CC=C(C=C1)C=CC=O
17	Curcuma longa	Curcuminoid	101341353	$C_{22}H_{20}N_2O_7$	424.409 g/ mol	CC1=C(C=C(C=C1)C=CC(=O)CC(=O) C=CC2=CC(=C(C(=C2)OC)C)[N+](=O)[O-]) [N+](=O)[O-]
18	Coriandrum sativum	L-alanine	5950	C ₃ H ₇ NO ₂	89.094 g/ mol	CC(C(=O)O)N
19	Coccinia indica	Lupeol	259846	C ₃₀ H ₅₀ O	426.729 g/ mol	CC(=C)C1CCC2(C1C3CCC4C5(CCC(C(C- 5CCC4(C3(CC2)C)C)(C)C)O)C)C

20	Carica papaya	Saponin	198016	C ₅₈ H ₉₄ O ₂₇	1223.363 g/mol	CC1(C2CCC3(C(C2(CCC1OC4C(C(C(C04) OC5C(C(C(C05)O)O)O)OC6C(C(C(C(O6) CO)O)O)O)OC7C(C(C(C(O7)CO)O) O)OC8C(C(C(C(O8)CO)O)O)O)C) CCC91C3(CC(C2(C9CC(CC2)(C)C=O)CO1) O)C)C
21	Cassia auriculata	Triterpenoid	451674	$C_{30}H_{48}O_7S$	552.767 g/ mol	CC1(CCC2(CCC3(C(=CCC4C3(CCC5C4(C- CC(C5(C)COS(=O)(=O)O)O)C)C)C2C1)C) C(=O)O)C
22	Diospyros peregrine	Butelin	72326	$C_{30}H_{50}O_{2}$	442.728 g/ mol	CC(=C)C1CCC2(C1C3CCC4C5(CCC(C(C- 5CCC4(C3(CC2)C)C)(C)C)O)C)CO
23	Ficus benghalensis	Leucopelargoni- din	3286789	C ₁₅ H ₁₄ O ₆	290.271 g/ mol	C1=CC(=CC=C1C2C(C(C3=C(C=C(C=C3O2) O)O)O)O)O
24	Feronia elephantum	Bergapten	2355	$C_{12}H_8O_4$	216.192 g/ mol	COC1=C2C=CC(=O)OC2=CC3=C1C=CO3
25	Glycine max	3-Omethyl-D- chiro-inositol	164619	$C_7 H_{14} O_6$	194.183 g/ mol	COC1C(C(C(C(C10)0)0)0)0
26	Gymnema sylvestre	Gymnemic acid	91826975	C ₄₉ H ₇₆ O ₁₉	969.128 g/ mol	CC=C(C)C(=O)OC1C(C2(C(CC1(C)C) C3=CCC4C5(CCC(C(C5CCC4(C3(CC2O) C)C)(C)CO)OC6C(C(C(C(O6)C(=O)O)O) OC7C(C(C(C(O7)CO)O)O)O)O)C)COC(=O) C)O
27	Hordeum vulgare	Beta-glucan	439262	$C_{18}H_{32}O_{16}$	504.438 g/ mol	C(C1C(C(C(C(01)OC2C(OC(C(C2O)O) OC3C(OC(C(C3O)O)O)CO)CO)O)O)O)O
28	Jatropha curcas	Diterpene	392471	$C_{20}H_{32}O_{3}$	320.473 g/ mol	CC1(C2CCC34CC(CCC3C2(CCC1=O)C) C(C4)(CO)O)C
29	Momordica balsamina	Cucurbitacin	5281316	$C_{32}H_{46}O_8$	558.712 g/ mol	CC(=0)OC(C)(C)C=CC(=0) C(C) (C1C(CC2(C1(CC(=0)C3 (C2CC = C4C3CC(C(=0)C4(C)C)O)C)C)O)O
30	Mangifera indica	Magniferin	5281647	$C_{19}H_{18}O_{11}$	422.342 g/ mol	C1=C2C(=CC(=C1O)O)OC3 = CC (=C(C(=C3C2=O)O)C4C(C(C(C(O4)CO)O)O) O)O
31	Momordica charantia	Momordicin	57518366	$C_{31}H_{50}O_{3}$	470.738 g/ mol	$CC1CCC2(CCC3(C4(CCC5C(C(=O))))) \\ CCC5(C4C=CC3(C2C1C)O)C)(C)C)C)COC \\ CCC5(C4C=CC3(C2C1C)O)C)(C)C)C)COC \\ CCC5(C4C=CC3(C2C1C)O)C)(C)C)C)COC \\ CCC5(C4C=CC3(C2C1C)O)C)(C)C)C)C)COC \\ CCC5(C4C=CC3(C2C1C)O)C)(C)C)C)C)C)C)CCC \\ CCC5(C4C=CC3(C2C1C)O)C)(C)C)C)C)C)C)CCCCCCCCCCCCCCCCCCC$
32	Musa paradisiaca	Pectin	16738707	$C_{12}H_{16}O_{13}^{-2}$	368.247 g/ mol	C1(C(C(OC(C10)OC2C(C(OC2C(=O)[O-]) O)O)O)C(=O)[O-])O)O
33	Musa sapientum	Steroid	439726	C ₁₈ H ₂₄ O	256.389 g/ mol	CC12CCCC1C3CCC4=C(C3CC2)C=CC(=C4) O
34	Mentha peperita	Vanadium	23990	V	50.941 g/ mol	[V]
35	Nigella sativa	Thymoquinone	10281	$C_{10}H_{12}O_{2}$	164.204 g/ mol	CC1 = CC(=O)C(=CC1=O)C(C)C

36	Nelumbo nucifera	Tolbutamide	5505	$C_{12}H_{18}N_2O_3S$	270.347 g/ mol	CCCCNC(=O)NS(=O)(=O)C1=CC=C(C=C1)C
37	Psidium guajava	Pedunculagin	442688	C ₃₄ H ₂₄ O ₂₂	784.544 g/ mol	$\begin{array}{c} C \ 1 \ C \ 2 \ C \ (\ C \ 3 \ C \ (\ C \ (\ O \ 2 \) \ O \) \ O \ C \ (= O \) \\ C4=CC(=C(C(=C4C5=C(C \ (= C(C=C5C \ (=O) \\ O3)O)O)O)O)O)O)O)O(=O)C(=O)C6=CC(=C(C \\ (=C6C7 \ =C(C(=C(C=C7C(=O)O1)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)$
38	Psidium guajava	Strictinin	73330	C ₂₇ H ₂₂ O ₁₈	634.455 g/ mol	$\begin{array}{c} C \ 1 \ C \ 2 \ C \ (\ C \ (\ C \ (\ O \ 2 \) \ O \ C \ (= O \) \\ C3=CC(=C(C(=C3)O)O)O)O)O(=O) \\ C4=CC(=C(C(=C4C5=C(C(=C5C(=O)O1) \\ O)O)O)O)O)O \end{array}$
39	Phyllanthus embilica	Tannic acid	16129778	$C_{76}H_{52}O_{46}$	1701.206 g/ mol	$\begin{array}{l} C \ 1 = C \ (\ C = C \ (\ C \ (= C \ 1 \ 0 \) \ 0 \) \ C \ (= O \) \\ O \ C \ 2 = C \ C \ (= C \ C \ (= C \ 2 \ 0 \) \ 0 \) \ C \ (= O \) \\ O \ C \ 2 = C \ C \ (= C \ C \ (= C \ 2 \ 0 \) \ 0 \) \ C \ (= O \) \\ O \ C \ 2 = C \ C \ (= C \ C \ (= C \ 2 \ 0 \) \ 0 \) \ C \ (= O \) \\ O \ C \ 2 = C \ C \ (= C \ C \ (= C \ 2 \ 0 \) \ 0 \) \ C \ (= O \) \\ O \ C \ (= O \) \ C \ 5 = C \ (= C \ (C \ (= C \ 5 \) \ 0 \) \ 0 \) \ 0 \) O \) \\ O \ O \ C \ (= O \) \ C \ 5 = C \ (= C \ (C \ (= C \ 5 \) \ 0 \) \ 0 \) \ 0 \) O \) O \) O \ (= O \) \\ C \ 7 = C \ (= C \ (C \ (= C \ 5 \) \ 0 \) \ 0 \) O \$
40	Rhus coriaria	Nonanal	31289	C ₉ H ₁₈ O	142.242 g/ mol	0=22222222
41	Thespesia populnea	Herbacetin	5280544	$C_{15}H_{10}O_{7}$	302.238 g/ mol	C1=CC(=CC=C1C2=C(C(=O)C3=C(O2)C(=C (C=C3O)O)O)O)O
42	Thespesia populnea	Quercetin	5280343	C ₁₅ H ₁₀ O ₇	302.238 g/ mol	C 1 = C C (= C (C = C 1 C 2 = C (C (= O) C3=C(C=C(C=C3O2)O)O)O)O)O
43	Terminalia chebula	Palmitic acid	985	C ₁₆ H ₃₂ O ₂	256.43 g/ mol	0(0=)0000000000000000000000000000000000
44	Terminalia chebula	Chebulic acid	5281711	C ₂₈ H ₁₀ O ₁₆	602.372 g/ mol	$\begin{array}{c} C \ 1 = C \ 2 \ C \ (= C \ (\ C \ (= C \ 1 \ O \) \ O \) \ O \) \\ C3=C(C(=C4C5=C3C(=O)OC6 = C(C7=C(C8=C(C7=C(C8=C(C7=C(C8=C(C7=C(C8=C(C7=C(C8=C(C7=C(C8=C(C7=C(C8=C1)O7)O)O)C(=C56)C(=O) \ O4)O)O)O(C2=O) \end{array}$
45	Urtica dioica	Lectin	466371	C ₃₁ H ₃₉ N ₃ O ₄ S ₂	581.79 g/ mol	CC1=CC=C(C=C1)S(=O)(=O)N2CCCNCCCN (CC(=C)C2)S(=O)(=O)C3=CC=C(C=C3)C) CC4=CC=CC=C4
46	Withania somnifera	Withanolide	161671	C ₂₈ H ₃₈ O ₆	470.606 g/ mol	C C 1 = C (C (= O) O C (C 1) C (C) (C 2 C C C3C2(CCC4C3CC5C6(C4(C(=O)C=CC6O)C) O5)C)O)C
47	Withania coagulans	Esterase	153099	$C_{21}H_{26}N_2O_3S$	386.51 g/ mol	C1=CC=C(C=C1)COC(=O)NC(CCCCN) C(=O)SCC2=CC=CC=C2
48	Xanthocercis zambesiaca	Castanospermine	54445	C ₈ H ₁₅ NO ₄	189.211 g/ mol	C1CN2CC(C(C(C2C10)0)0)0
49	Zingiber officinale	Gingerol	3473	C ₁₇ H ₂₆ O ₄	294.391 g/ mol	CCCCCC(CC(=O)CCC1=CC(=C(C=C1)O) OC)O

Table 4: Drug Likeness us	ising Lipinski Filter
---------------------------	-----------------------

Sl. No.	Plant name	Compounds	Mass Molecular mass less than 500 Dalton	Hydrogen bond donor (Less than 5 hydrogen bond donors)	hydrogen bond acceptor (Less than 10 hydrogen bond acceptors)	LOGP High lipophilicity (expressed as LogP less than 5)	Molar Refractivity Molar refractivity should be between 40-130	Status
1	Allium Sativum	Ajoene	235.000000	1	1	3.344799	69.310791	Accepted
2	Abelmoschus esculanetus	Gum	523.000000	11	16	-5.314199	95.658279	Not Accepted
3	Agele marmelos	Coumarin	146.000000	0	2	1.618800	41.110996	Accepted
4	Agele marmelos	Aegeline	297.000000	2	4	2.558200	86.439468	Accepted
5	Acacia Arabica	Polyphenol	94.000000	1	1	1.392200	28.106796	Not Accepted
6	Azadirachta indica	Nimibidinin	444.000000	3	6	2.902400	115.582352	Accepted
7	Artocarpus hallophyllus	Sapogenin	472.000000	2	4	5.735000	131.722565	Accepted
8	Aloe barbadensis	Lophenol	400.000000	1	1	7.634703	123.599739	Not Accepted
9	Allium cepa	Allyl propyl disulphide	148.000000	0	0	2.963799	45.403992	Accepted
10	Butea monosperma	Butein	272.000000	4	5	2.405100	72.907692	Accepted
11	Brassica Juncea	Isorhamnetin 3,7-diglucoside	640.000000	10	17	-2.954500	143.891541	Not Accepted
12	Beta vulgaris	Polydextrose	342.000000	8	11	-5.397200	68.619385	Not Accepted
13	Cucumis metuliferus	Beta-carotene	536.000000	0	0	12.605807	181.392334	Not Accepted
14	Capsicum frutescens	Capsaicin	305.000000	2	4	3.789599	88.951477	Accepted
15	Coccinia indica	Beta-amyrin	426.000000	1	1	8.168902	130.719757	Not Accepted
16	Cinnamomum zeylanicum	Cinnamaldehyde	132.000000	0	1	1.898700	41.539997	Accepted
17	Curcuma longa	Curcuminoid	424.000000	0	7	4.383338	114.917770	Accepted
18	Coriandrum sativum	L-alanine	89.000000	3	2	-2.633300	17.357100	Not Accepted
19	Coccinia indica	Lupeol	426.000000	1	1	8.024802	130.649750	Accepted
20	Carica papaya	Saponin	1222.000000	15	27	-3.496513	284.220825	Not Accepted
21	Diospyros peregrine	Triterpenoid	550.000000	1	7	5.436600	140.072235	Not Accepted
22	Cassia auriculata	Butelin	442.000000	2	2	6.997202	132.061554	Not Accepted

						1	1	
23	Ficus bengalensis	Leucopelargo- nidin	290.000000	5	6	1.331400	72.213989	Accepted
24	Feronia elephantum	Bergapten	216.000000	0	4	2.373600	57.434994	Accepted
25	Glycine max	3-Omethyl-D- chiro-inositol	194.000000	5	6	-3.180501	40.830990	Accepted
26	Gymnemssa sylvestre	Gymnemic acid	971.000000	9	19	0.839671	0.839671	Not Accepted
27	Hordeum vulgare	Beta-glucan	472.000000	9	14	-5.862198	98.723137	Not Accepted
28	Jatroph acurcas	Diterpene	320.000000	2	3	3.321599	88.769569	Accepted
29	Momordica balsamina	Cucurbitacin	558.000000	3	8	3.499300	147.766479	Not Accepted
30	Mangifera indica	Magniferin	422.000000	8	11	-0.639399	95.769852	Not Accepted
31	Momordica charantia	Momordicin	472.000000	1	3	7.054302	137.335800	Not Accepted
32	Musa paradisiaca	Pectin	368.000000	5	13	-7.437499	63.776997	Not Accepted
33	Musa sapientum	Steroid	256.000000	1	1	4.405699	76.407784	Accepted
34	Mentha piperita	Vanadium	0.000000	0	0	0.000000	0.000000	Not Accepted
35	Nigella sativa	Thymoquinone	164.000	0	2	1.666900	46.691990	Accepted
36	Nelumbo nucifera	Tolbutamide	270.000000	2	5	2.863820	69.851395	Accepted
37	Psidium guajava	Pedunculagin	784.000000	11	22	0.742501	171.597733	Not Accepted
38	Psidium guajava	Strictinin	634.000000	9	18	-0.188199	137.671677	Not Accepted
39	Phyllanthus embilica	Tannic acid	1700	25	46	3.209100	381.854187	Not Accepted
40	Rhus coriaria	Nonanal	142.0000	0	1	2.935899	44.056988	Accepted
41	Thespesia populnea	Herbacetin	302.000000	5	7	2.010900	74.050476	Accepted
42	Thespesia populna	Quercetin	302.000000	5	7	2.010900	74.050476	Accepted
44	Terminalia chebula	Palmitic acid	255.000000	0	2	4.217598	75.318977	Not Accepted
44	Terminalia chebula	Chebulic acid	602.000000	8	16	2.225401	134.260376	Not Accepted
45	Urtica dioica	Lectin	582.000000	1	6	5.581741	159.180878	Not Accepted
46	Withania somniferum	Withanolide	470.0000	2	6	3.495399	124.511551	Accepted
47	Withania coagulans	Esterase	387.000000	4	4	3.153599	107.900772	Accepted
48	Xanthoceris zambesica	Castanospermine	190.000000	5	4	-3.899200	43.128891	Accepted
49	Zingiber officinale	Gingerol	294.000000	2	4	3.233799	82.752579	Accepted

S.N.	Compound Name	Heavy	Hetero	Solubility	Oral	Oral	Ratio	Status
		atom	atom	(mg/l)	Bioavliblity	Bioavliblity	(H/C)	
					(EGAN)	(VEBER)		
1	Coumarin	11	2	18680.96	Good	Good	.22	Accepted
2	Aegeline	22	4	14204.51	Good	Good	.22	Accepted
3	Sapogenin	34	4	702.8912	Good	Good	.13	Accepted
4	Allyl propyl disulphide	8	2	20620.21	Good	Good	.33	Accepted
5	Butein	20	5	9231.889	Good	Good	.33	Accepted
6	Capsaicin	22	4	9356.726	Good	Good	.22	Accepted
7	Cinnamaldehyde	10	1	18411.1	Good	Good	.11	Accepted
8	Lupeol	31	1	75.6509	Good	Good	.03	Accepted
9	Leucopelagronidin	21	6	30803.51	Good	Good	.40	Accepted
10	Bergaptan	16	4	14084.11	Good	Good	.33	Accepted
11	3-O methyl-D chiro-inositol	13	6	538058.3	Good	Good	.85	Accepted
12	Diterpene	23	3	8114.772	Good	Good	.15	Accepted
13	Steroid	19	1	1605.191	Good	Good	.05	Accepted
14	Thymoquinone	12	2	18597.83	Good	Good	.2	Accepted
15	Tolbutamide	18	6	16010.2	Good	Good	.5	Accepted
16	Nonanal	10	1	14066.93	Good	Good	.11	Accepted
17	Nimibidinin	13	4	37130.75	Good	Good	.44	Accepted
18	Herbacetin	22	7	10239.43	Good	Good	.46	Accepted
19	Quercetin	22	7	15228.15	Good	Good	.47	Accepted
20	Withanolide	34	6	4771.677	Good	Good	.21	Accepted
21	BLT Esterase	27	6	8186.257	Good	Good	.28	Accepted
22	Castenospermia	13	5	281732	Good	Good	.62	Accepted
23	Gingerol	21	4	17226.19	Good	Good	.23	Accepted
24	Ajoene	13	4	37130.75	Good	Good	.44	Accepted
25	Curcuminoid	31	9	3565.719	Good	Good	.40	Accepted

Table 5: FAF Drug Results. Best selected compounds on the basis of adsorption, distribution, metabolism, excretion and toxicity

Table 6: YASARA Autodock VINA calculation

Compound Name with (CID No.)	Bind. Energy (kcal/mol)	Dissoc. Constant [pM]	Contacting receptor residues
3-o-methyl-D- chiro-inositol (164619)	000005.9760	00000041642224.0000	Gly ¹⁸ , Thr ¹⁹ , Trp ²⁰ , Lys ²¹ Asp ⁴³ , Tyr ⁴⁸ Lys ⁷⁷ , His ¹¹⁰ , Trp ¹¹¹ , Asn ¹⁶⁰ , Gln ¹⁸³ , Tyr ²⁰⁹ , Ser ²¹⁰ , Pro A ²¹¹ , Ser ²¹⁴ , Ile ²⁶⁰ , Pro ²⁶¹ , Lys ²⁶² , Cys ²⁹⁸
Ajoene (5386591)	000005.6470	00000072559472.0000	Trp ²⁰ , Tyr ⁴⁸ , Lys ⁷⁷ , Trp ⁷⁹ , His ¹¹⁰ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Asn ¹⁶⁰ , Gln ¹⁸³ , Tyr ²⁰⁹ , Ser ²¹⁰ , Trp ²¹⁹ , Cys ²⁹⁸ , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹
Butein (5281222)	000007.7090	00000002234745.5000	Trp ²⁰ , Lys ²¹ , Val ⁴⁷ , Tyr ⁴⁸ , Gln ⁴⁹ , Trp ⁷⁹ , His ¹¹⁰ , Trp ¹¹¹ , Phe ¹²¹ , Phe ¹²² , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰
Herbacetin (5280544)	000008.3270	0000000787459.1875	Trp ²⁰ , Val ⁴⁷ , Tyr ⁴⁸ , Trp ⁷⁹ , His ¹¹⁰ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Pro ²¹⁸ , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹ , Pro ³¹⁰

Leucopelargonidin (3286789)	000007.2640	00000004736062.0000	Trp ²⁰ , Val ⁴⁷ , Tyr ⁴⁸ , Gln ⁴⁹ , Trp ⁷⁹ , Trp ¹¹¹ , Phe ¹²¹ , Phe ¹²² , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰
Nimbidinin (101306757)	000007.7100	00000002230976.7500	Trp ²⁰ , Lys ²¹ , Pro ²³ , Pro ²⁴ , Val ⁴⁷ , Tyr ⁴⁸ , Gln ⁴⁹ , His ¹¹⁰ , Phe ¹²¹ , Phe ¹²² , Pro ²¹⁸ , Trp ²¹⁹
Coumarin (323)	000008.5520	0000000538642.8125	Trp ⁷⁹ , Cys 80 , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹ , Pro ³¹⁰
Tolbutamide (5505)	000008.7870	0000000362279.3750	Trp ⁷⁹ , Cys ⁸⁰ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Leu ¹²⁴ , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰ , Ser ³⁰² , Cys ³⁰³ , Tyr ³⁰⁹
Quercetin, (5280343)	000008.7500	0000000385624.8125	Trp ²⁰ , Tyr ⁴⁸ , Trp ⁷⁹ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Pro ²¹⁸ , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹ , Pro ³¹⁰ , Phe ³¹¹

Table 7: Interacted residue, active Site and their residues and common interacted residues with compound name

Compound Name	Interacted residue	Active Site and their residues	Common Interacted Residues
3-o-methyl-D- chiro-inositol	Gly ¹⁸ , Thr ¹⁹ , Trp ²⁰ , Lys ²¹ , Asp ⁴³ , Tyr ⁴⁸ Lys ⁷⁷ , His ¹¹⁰ , Trp ¹¹¹ , Asn ¹⁶⁰ , Gln ¹⁸³ , Tyr ²⁰⁹ , Ser ²¹⁰ , Pro A ²¹¹ , Ser ²¹⁴ , Ile ²⁶⁰ , Pro ²⁶¹ , Lys ²⁶² , Cys ²⁹⁸	$\begin{array}{l} Trp^{20}, Lys^{221}, Pro^{218}, Trp^{219}, Trp^{79},\\ Cys^{80}, Trp^{111}, Thr^{113}, Phe^{115},\\ Phe^{122}, Leu^{300}, Cys^{303}, Tyr^{309},\\ Ala^{299}, Cys^{298}, His^{110}, Val^{47}, Tyr^{48},\\ Asn^{160}, Tyr^{209}, Ser^{159}, Gln^{183},\\ Pro^{211}, Lys^{77}, Asp^{43}, Ile^{260}, Thr^{19},\\ Gly^{183}, Lys^{262}, Pro^{211}, Pro^{211},\\ Asp^{216}, Leu^{212}, Pro^{215}, Pro^{261},\\ Leu^{228}, Arg^{268}, Ser^{263}, Asn^{272},\\ Ala^{245}, Glu^{271}, Thr^{243}, Thr^{244},\\ Glu^{22}, Ser^{226}, Val^{264}, Thr^{265}, Val^{297},\\ Ser^{302}, Leu^{124}, Leu^{301}, Phe^{311},\\ Pro^{310}, Gln^{49}, Phe^{121}, His^{46}, Leu^{108},\\ Val^{30}, sGly^{213}, Glu^{67}, Asn^{50}, Ser^{22} \end{array}$	Gly ¹⁸ , Trp ²⁰ , Thr ¹⁹ , Asp ⁴³ Tyr ⁴⁸ Lys ⁷⁷ , Trp ¹¹¹ , Tyr ²⁰⁹ Asn ¹⁶⁰ , Pro ²¹¹ , Ile ²⁶⁰ , Lys ²⁶² Cys ²⁹⁸ , His ¹¹⁰ , Gln ¹⁸³ , Pro ²⁶¹ , Lys ²⁶² , Cys ²⁹⁸
Ajoene	Trp ²⁰ , Tyr ⁴⁸ , Lys ⁷⁷ , Trp ⁷⁹ , His ¹¹⁰ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Asn ¹⁶⁰ , Gln ¹⁸³ , Tyr ²⁰⁹ , Ser ²¹⁰ , Trp ²¹⁹ , Cys ²⁹⁸ , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹		Trp ²⁰ , Tyr ⁴⁸ , LYS ⁷⁷ , Trp ⁷⁹ His ¹¹⁰ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Asn ¹⁶⁰ , Gln ¹⁸³ , Tyr ²⁰⁹ , Ser ²¹⁰ , Trp ²¹⁹ , Cys ²⁹⁸ , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹
Butein	Trp ²⁰ , Lys ²¹ , Val ⁴⁷ , Tyr ⁴⁸ , Gln ⁴⁹ , Trp ⁷⁹ , His ¹¹⁰ , Trp ¹¹¹ , Phe ¹²¹ , Phe ¹²² , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰		Trp ²⁰ , Val ⁴⁷ , Tyr ⁴⁸ , Gln ⁴⁹ , Trp ⁷⁹ , His ¹¹⁰ , Trp ¹¹¹ , Phe ¹²¹ , Phe ¹²² , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰
Herbacetin	Trp ²⁰ , Val ⁴⁷ , Tyr ⁴⁸ , Trp ⁷⁹ , His ¹¹⁰ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Pro ²¹⁸ , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹ , Pro ³¹⁰		Trp ²⁰ , Val ⁴⁷ , Tyr ⁴⁸ , Trp ⁷⁹ , His ¹¹⁰ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Pro ²¹⁸ , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹ , Trp ²¹⁹ , Pro ³¹⁰
Leucopelargo- nidin	Trp ²⁰ , Val ⁴⁷ , Tyr ⁴⁸ , Gln ⁴⁹ , Trp ⁷⁹ , Trp ¹¹¹ , Phe ¹²¹ Phe ¹²² , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰		Trp ^{20,} Val ⁴⁷ , Tyr ⁴⁸ , Gln ⁴⁹ , Trp ⁷⁹ , Trp ¹¹¹ , Phe ¹²¹ , Phe ¹²² , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰ ,
Nimbidinin	Trp ²⁰ , Lys ²¹ , Pro ²³ , Pro ²⁴ , Val ⁴⁷ , Tyr ⁴⁸ , Gln ⁴⁹ , His ¹¹⁰ , Phe ¹²¹ , Phe ¹²² , Pro ²¹⁸ , Trp ²¹⁹		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Coumarin	Trp ⁷⁹ , Cys ⁸⁰ , Trp ¹¹¹ Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹ , Pro ³¹⁰		$ \begin{array}{c} Trp^{79}, \ Cys^{80}, \ Trp^{111}, \ Thr^{113}, \ Phe^{115}, \\ Phe^{122}, \ Trp^{219}, \ Cys^{298}, \ Ala^{299}, \ Leu^{300}, \\ Cys^{303}, \ Tyr^{309}, \ Pro^{310} \end{array} $

Tolbutamide	Trp ⁷⁹ , Cys ⁸⁰ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ , Phe ¹²² ,	Trp ⁷⁹ , Cys ⁸⁰ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ ,
	Leu ¹²⁴ , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰ , Ser ³⁰² ,	Phe ¹²² , Leu ¹²⁴ , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ ,
	Cys ³⁰³ , Tyr ³⁰⁹	Leu ³⁰⁰ , Ser ³⁰² , Cys ³⁰³ Tyr ³⁰⁹
	Trp ²⁰ , Tyr ⁴⁸ , Trp ⁷⁹ , Trp ¹¹¹ , Thr ¹¹³ , Phe ¹¹⁵ ,	Trp ²⁰ , Tyr ⁴⁸ , Trp ⁷⁹ , Trp ¹¹¹ , Thr ¹¹³ ,
Orrentin	Phe ¹²² , Pro ²¹⁸ , Trp ²¹⁹ , Cys ²⁹⁸ , Ala ²⁹⁹ , Leu ³⁰⁰ ,	Phe ¹¹⁵ , Phe ¹²² Pro ²¹⁸ , Trp ²¹⁹ , Cys ²⁹⁸ ,
Querceim	Cys ³⁰³ , Tyr ³⁰⁹ , Pro ³¹⁰ , Phe ³¹¹	Ala ²⁹⁹ , Leu ³⁰⁰ , Cys ³⁰³ , Tyr ³⁰⁹ , Pro ³¹⁰ ,
		Phe ³¹¹

Ser²¹⁴, Pro²¹⁵, Asp²¹⁶, Ala²⁴⁵, Ile²⁶⁰, Val²⁶⁴, Thr²⁶⁵, Arg²⁶⁸, Glu²⁶¹, Asn²⁶², Cys²⁹⁸, Ala²⁹⁹ and Leu³⁰⁰ were found conserved with binding site 1, which is major active site involved in interaction with 7 best screened compounds (Fig. 6, 7 and 8).

 \mathcal{N} Singh *et al.*

There are several medicinal plants which contains certain phytochemicals that are reported to have antidiabetic properties. Such phytochemicals are often used to either treat or mitigate the effects of diabetes. In the present study, 45 medicinal plants and their active anti-diabetic compounds were selected. Using Lipinski filter, the drug-likeness and non-druglikeness of the selected compounds were estimated. The compounds which showed high drug-likeness were further analyzed by 'FAF Drug analysis' tool and seven anti-diabetic compounds were selected which possessed most effective properties in terms of adsorbtion, distribution, metabolism, excretion and toxicity. Using these seven compounds as ligands and AR receptor as target molecule, docking was performed using YASARA tool. Butea monosperma, commonly known as Palash belongs to buteia genus of Fabaceae family.

A Butein compound isolated from *B. monosperma* has been well reported to have anti-diabetic property (Vikrant and Sharma, 2011). Its stem and bark can be used for the treatment of dyspepsia, diarrhea, dysentery, diabetes, ulcers, sore throat and snake bites (Jayaweera, 1981). *Thespesia populnea* belongs to Malvaceae family. It has Herbacetin and Qurecetin compounds that helps in diabetic management (Sofara, 1984; Kumar and Clark, 2002). *T. populnea* also possess useful medicinal properties such as anti-fertility, antimicrobial, anti-inflammatory, antioxidant, purgative and hepatoprotective activity (Arthanari *et al.*, 2009). Ficus benghalensis, also Know "Indian banyan" belong to Moraceae Family. Leucopelargonidin, a compound isloated from F. benghalensis, has antidiabetic property (Mamun or Rashid et al., 2014; Vikrant and Sharma, 2011). A glycoside isolated from the bark of Ficus benghalensis, has been shown to raise significant serum insulin and has hypoglycaemic, hypolipidemic effects in moderately diabetic rats. Dimethoxy ether of leucopelargonidin-3- O-alpha-L rhamnoside at a dose of 100 mg/kg, p.o. showed significant hypoglycaemic and insulin-mimetic activity in healthy and alloxan induced-diabetic rats during a period of 2 hour (Bouham et al., 2006). Azadirachta indica, commonly known as Neem, is a tree that belongs Meliaceae family. A. indica has been shown to possess hypolipidemic, hypoglycemic, immunostimulant and hepatoprotective properties (Govind et al., 1990; Ara et al., 1989).

The compound Nimbidinin has been isolated from *A. indica* leaves that help in diabetic treatment (Basak and Chakroborty, 1969). *Aegle marmelos*, is known as bael in India, that belong Rutaceae Family. It leave, seeds contain Coumarin and Aegeline that are antidiabetic compound (Mamun or Rashid *et al.*, 2014; Kesari *et al.*, 2006). It leave has been used in Ayurvedic Unani and Siddha system in India that used as antidiabetic and hypoglycemic activity (Sankeshi *et al.* 2013). *Nelumbo nucifera*, is known as Indian lotus belongs to Nelumbonaceae family.

Tolbutamide is anti-diabetic compound which is isolated from *N. nucifera* (Mamun or Rashid *et al.* 2014). *N. nucifera* leaves containing compound appear to exert comprehensive inhibitory effects against oxidative stress-related diabetic complications, and or preventive agents for diabetic complications and

Fig. 6: Interaction between AR receptor and ligands (a) Butein (b) Herbacetin (c) Leucopelargonidin (d) Nimbidinin (e) Coumarin (f) Quercetin (g) Tolbutamide

Fig. 7: 2-D interaction between receptor (AR) and ligands (Butein, Herbacetin, Leucopelagronidin, Nimbidinin, Coumarin, Quercetin and Tolbutamide)

111

Fig. 8: 3-D Interaction between ligands (Butein, Herbacetin, Leucopelagronidin, Nimbidinin, Coumarin, Qurecetin and Tolbutamide) and Receptor (AR)

aging-related diseases. (Jung *et al.*, 2008). Tolbutamide is a first-generation, sulfonylurea, oral-hypoglycemic agent used in the treatment of type-2 diabetes (Brian, 2007).

CONCLUSION

AR was selected as a prominent target protein to study the interaction of selected anti-diabetic compounds isolated from various medicinal plants. Through *in-silico* screening, total nine antidiabetic compounds (3-O-Methyl-D-chiro-inositol (D-pinitol), Ajoene, Butein, (Herbacetin, Qurecetin), Leucopelargonidin, Nimbidinin, Coumarin, and Tolbutamide) were selected out of 49w reported anti-diabetic compounds isolated from 45 medicinal plants. The docking calculations between selected nine anti-diabetic compounds and target protein were performed successfully using YASARA tool. Based on parameters like good oral bioavailability, Nontoxicity and Drug likeness, Adsorption, Distribution, Metabolism, Excretion, Toxicity showing strong binding affinity with prominent binding site residues and good dissociation constant, only seven out of nine compounds were selected as the best possible ligands. Docking results showed seven anti-diabetic compounds (Butein, (Herbacetin, Querecitin), Tolbutamide, Coumarin, Leucopelagrodin and Nimbidinin) as effective compounds can be used for the treatment of diabetes.

ACKNOWLEDGEMENTS

Author would like to thankfully acknowledge the Department of Biotechnology, Government of India, New Delhi for fellowship. The support received from Coordinator Prof. Arvind Kumar and Information officer Dr. V. K. Singh, Centre for Bioinformatics, School of Biotechnology, Banaras Hindu University is greatly acknowledged.

REFERENCES

- Ahmed, A.M. 2002. History of diabetes mellitus. *Saudi Med J.*, **23**(4): 373-378.
- Ara I., Siddiqui B. S., Faizi S. and Siddiqui S. 1989. Diterpenoids from the stem bark of Azadirachta indica, *Phytochemistry*, 28(4): 1177–118.
- Arthanari S.K., Venkateshwaran K., Vanitha J., Saravanan VS., Ganesh M. and Vasudevan M. 2009. Synergistic activity of methanol extract of *Thespesia populnea* (Malvaceae) flowers with oxytetracycline. *Bangladesh J Pharmacol.*, 4: 13–6.
- Atkinson M.A., Eisenbarth G.S. and Michels AW. 2014. Type 1. diabetes. *Lancet*, **383:** 69-82.
- Ayodhya S., Kusum S. and Anjali S. 2010. Hypoglycaemic activity of different extracts of various herbal plants Singh. *Int J Ayurveda Res Pharm.* 1(1): 212-224.
- Azevedo M. and Alla S. 2008. Diabetes in sub-saharan Africa: kenya, mali, mozambique, Nigeria, South Africa and zambia. *Int J Diabetes Dev Ctries.*, **28**(4): 101-108.
- Basak S.P. and Chakroborty D.P 1969. Chemical investigation of *Azadirachta indica* leaf (*M. azadirachta*) *Journal of the Indian Chemical Society*, **45**: 466–467.
- Berman H.M. 2008. The Protein Data Bank: a historical perspective. Acta Crystallographica Section A. A64 (1): 8895.
- Bnouham M., Ziyyat A., Mekhfi H., Tahri A. and Legssyer A. 2006. Medicinal plants with potential anti-diabetic activity-a review of ten years of herbal medicine research. *Int J Diabetes Metab.*, **14:** 1-25.
- Brady G.P. Jr, Stouten P.F 2000. Fast prediction and visualization of protein binding pockets with PASS, J. Comput. Aided Mol. Des., 14: 383-401.
- Brian L. Furman 2007. in xPharm: The Comprehensive Pharmacology Reference, Pages 1-4.
- Burke J.P., Williams K., Gaskill S.P., Hazuda H.P., Haffner S.M. and Stern M.P. 1999. Rapid rise in the incidence of type 2 diabetes from 1987 to 1996: results from the San Antonio Heart Study. *Arch Intern Med.*, 12; 159(13): 1450-6.
- Center for Disease Control and Prevention: (1980–1994). Trends in the prevalence and incidence of self reported diabetes mellitus: United States, *MMWR.*, **46**: 1014–1018.

- Centers for Disease Control and Prevention (CDC) (2004). MMWR. Morbidity and Mortality Weekly Report; Genetic basis of type 1 and type 2 diabetes, obesity, and their complications. (2011). Advances and emerging opportunities in diabetes research: a Strategic Planning report of the DMICC. Prevalence of overweight and obesity among adults with diagnosed Diabetes United States, 1988-1994 and 1999-2000" 53(45): 1066-1068.
- Charkrewarthy S., Thabrew M.I., Weerasuriya M.K. and Jayasekera S. 2010. Evaluation of the hypoglycemic and hypolipidemic effects of an ethylacetate fraction of *Artocarpus hetrophyllus* (jak) leaves in streptozotocininduced diabetic rats. *Pharmacogn Mag.*, **6**(23): 186-90.
- Chauhan A., Sharma P.K., Srivastava P., Kumar N. and Duehe R. 2010. Plants having potential anti-diabetic activity: a review. *Der Pharm Lett.* 2(3): 369-387.
- Chen L., Magliano D.J. and Zimmet P.Z. 2011. The worldwide epidemiology of type 2 diabetes mellitus: present and future perspectives. *Nature reviews endocrinology*, 8: 228-236.
- Cheng H.M. and Gonzalez R.G. 1986. The effect of high glucose and oxidative stress on lens metabolism, aldose reductase and senile cataractogenesis. *Metab.Clin.Exp.*, **35**: 10-14.
- Cherian S. and Augusti K.T. 1993. Anti-diabetic effect of a glycoside of pelargonidin isolated from the bark of *Ficus bengalensis* Linn. *Indian J Exp Biol.*, **31**(1): 26-29.
- Chung S.S., Ho E.C., Lam K.S. and Chung SK. 2003. Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol., 14(8 Suppl 3): S233-6.
- Cumming J.G., Davis A.M., Muresan S., Haeberlein M. and Chen H. 2013. Chemical predictive modelling to improve compound quality, *Nat. Rev. Drug Discov.*, **12**: 948.
- De Fronzo R.A. and Lilly Lecture. 1988. The triumvirate: cell, muscle, liver: a collusion responsible for NIDDM. *Diabetes*, **37:** 667–687.
- Drel V.R., Pacher P., Ali T.K., Shin J., Julius U., EI-Remessy A.B. and Obrosova I.G. 2008. *Aldose reductase* inhibitor Fidarestat counteracts diabetes–associated cataract formation, retinal Oxidative-nitrosative stress, glial activation and apotosis. *Int. J. Mol.*, **21:** 667-676.
- Eidi A., Eidi M. and Esmaeili E. 2006. Anti-diabetic effect of garlic (*Allium sativum L.*) in normal and streptozotocin induced diabetic rats. *Phytomedicine*, **13**: 624-629.
- Eisenbarth G.S. 1986. Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med., **314**: 1360-1386.
- Frode T.S. and Medeiros Y.S. 2008. Animal models to test drugs with potential anti-diabetic activity. *J Ethnopharmacol.*, **115**: 173-183.
- Govindachari T.R., Sandhya G. and Ganeshraj S.P. 1990. Simple method for the isolation of azadirachtin byp reparative high performance liquid chromatography," *Journal of Chromatography*, **513**: 389–391.

- Hamada Y., Araki N., Koh N., Naka-mura J., Horiuchi N., Nakamura J., Horiuchi S. and Hotta N. 1996. Rapid formation of advanced glycation end products by intermediate metabolites of glycolytic pathway and polyol pathway. *Biochem. Biophys. Res. Commun.*, 228: 539-543.
- Harinantenaina L., Tanaka M., Takaoka S., Oda M., Mogami O., Uchida M. and Asakawa Y. 2006. *Momordica charantia* constituents and antidiabetic screening of the isolated major compounds. *Chem Pharm Bull.* 54: 1017-1021.
- Hatapakki B.C., Suresh H.M., Bhoomannavar V. and Shivkumar SI. 2005. Effect of *Cassia auriculata* Linn. Flowers against alloxan-induced diabetes in rats. *J Nat Remedies* **5**(2): 132-136.
- Hendlich M., Rippmann F. and Barnickel G. 1997. LIGSITE: automatic and efficient detection of potential small molecule-binding sites in proteins, *J. Mol. Graph. Model*, **15**: 359-363.
- Honda S., Aoki F., Tanaka H., Kishida H., Nishiyama T., Okada S, Matsumoto I, Abe K. and Mae T. 2006. Effects of ingested turmeric oleoresin on glucose and lipid metabolisms in obese diabetic mice: a DNA microarray study. J Agric Food Chem., 54(24): 9055-9062.
- Howard E.I., Sanishvili R., Cachau R.E., Mitschler A., Chevrier B., Barth P., Lamour V., Van Zandt M., Sibley E., Bon C., Moras D., Schneider T.R., Joachimiak A. and Podjarny A. 2004. Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A. *Proteins*, 55(4): 792-804.
- Jayaweera D.M. 1981. Medicinal Plant Used in Ceylon. National Science Council of Sri Lanka, Colombo: 161. Part 3.
- Jenning P.E., Nightingale S., Le Guen C., Lawson N., Williamson J.R., Hoffman P. and Barnett A.H. 1990. Prolonged aldose reductase inhibition in chronic peripheral diabetes neuropathy: effect on microangiopathy. *Diabet. Med.*, **7:** 63-68.
- Jung H., Jung Jung Y., Young Yoon N., Jeong D., Ju Bae H., Kim D., Na D. and Choi J. 2008. Inhibitory effects of *Nelumbo nucifera* leaves on rat lens aldose reductase, advanced glycation endproducts formation, and oxidative stress *Food and Chemical Toxicology*, **46**: 3818–3826.
- Kang M.J., Kim J.I., Yoon S.Y., Kim J.C. and Cha I.J. 2006. Pinitol from Soyabeans reduces postprandial blood glucose in patients with type 2 diabetes mellitus. *J Med Food.*, **9**(2): 182-186.
- Kato A., Higuchi Y., Goto H., Kizu H., Okamoto T., Asano N., Hollinshead J, Nash RJ and Adachi I. 2006. Inhibitory effects of *Zingiber officinale* Roscoe derived components on aldose reductase activity in vitro and *in vivo*. J Agric Food Chem., 54(18): 6640-6644.
- Kesari A.N., Gupta R.K., Singh S.K., Diwakar S. and Watal G. 2006. Hypo-glycemic and anti-hyperglycemic activity of

Aegle marmelos seed extract in normal and diabetic rats. *J Ethnopharmacol.*,**107**: 374-379.

- Khosla P., Bhanwra S., Singh J., Seth S. and Srivastava R.K. 2000. A study of hypoglycaemic effects of *Azardirachta indiaca* (Neem) in normaland alloxan diabetic rabbits. *Indian J Physiol Pharmacol.*, 44(1): 69-74.
- Kim S., Thiessen P.A., Bolton E.E., Chen J., Fu G., Gindulyte A., Han L., He J., He S., Shoemaker BA., Wang J., Yu B., Zhang J. and Bryant S.H. 2016. PubChem Substance and Compound databases. *Nucl. Acids Res.*, 4: 44(D1): D1202-13.
- Krieger E. and Vriend G. 2014. YASARA View molecular graphics for all devices from smartphones to workstations, *Bioinformatics.*, 30(20): 2981-2982.
- Kudva Y.C. and Butler P.C. 1997. Insulin secretion in type-2 diabetes mellitus. In Clinical Research in Diabetes and Obesity. Volume 2: Diabetes and Obesity. Draznin B, Rizza R, Eds. Totowa, NJ, Humana Press, pp. 119–136.
- Kumar P. and Clark M. 2002. Diabetes Mellitus and Other Disorders of Metabolism. In: Clinical Medicine, Sunders, WB (Eds.). 2nd ed. Elsevier, London, pp. 1069-1071.
- Kumari K., Mathew B.C. and Augusti K.T. 1995. Anti-diabetic and hypolipidemic effects of S-methyl cysteine sulfoxide from *Allium cepa* Linn. *Indian J Biochem Biophys.*, **32**(1): 49-54.
- Laskowski R.A. 1995. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions, J. Mol. Graphvol., 13: 323-330. 307–308.
- Laskowski R.A., Hutchinson E.G., Michie A.D., Wallace A.C., Jones M.L. and Thornton J.M. 1997. PDBsum: a Webbased database of summaries and analyses of all PDB structures. *Trends Biochem. Sci.*, **22**(12): 488–90.
- Laurie A.T. and Jackson R.M. 2005. Q-SiteFinder: an energybased method for the prediction of protein-ligand binding sites, *Bioinformatics*, 21: 1908-1916.
- Lee M.W., Kim J.S., Cho S.M., Kim J.H. and Lee J.S. 2001. Anti- diabetic constituent from the nodes of lotus rhizome. (*Nelumbo nucifera* Gaertn). *Nat Prod Sci.*, **7:** 107–109.
- Lipinski C.A. 2004. Lead and drug-like compounds: the ruleof-five revolution. *Drug Discovery Today: Technologies*, **1**(4): 337–341.
- Lipinski C.A., Lombardo F., Dominy B.W. and Feeney P.J. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. *Adv. Drug Deliv. Rev.*, **46**(1-3): 3–26.
- Liu C.T., Wong P.L., Lii C.K., Hse H. and Sheen L.Y. 2006. Antidiabetic effect of garlic oil but not diallyl disulfide in rats with streptozotocin-induced diabetes. *Food Chem Toxicol.*, 44: 1377-1384.
- Ludvik B., Nolan J.J., Baloga J., Sacks D. and Olefsky J. 1995. Effect of obesity on insulin resistance in normal subjects and patients with NIDDM. *Diabetes*, **44**: 1121–1125.

- Maitra A., Abbas AK Endocrine system. In: Kumar V., Fausto N. and Abbas AK 2005. Robbins and Cotran Pathologic basis of disease (7th ed). Philadelphia, Saunders; pp. 1156-1226.
- Makheswari M.U. and Sudarsanam D. 2012. Database on Anti-diabetic indigenous plants of Tamil Nadhu, India. *Int J Pharma Sci Res.*, **3**(2): 287-293.
- Malviya N., Jain S. and Malviya S. 2010. Anti-diabetic potential of medicinal plants. *Acta Pol Pharm.*, **67**(2): 113–118.
- Mamun-or-Rashid ANM, Hossain Md. Shamim, Hassan Naim, Dash Biplab. Kumar, Sapon Md. Ashrafuzzaman, Sen Monokesh Kumer 2014. A review on medicinal plants with antidiabetic activity, Jurnal of Pharmacognosy and Phytochemistry, 3(4): 149-159.
- Marchler-Bauer A., Zheng C., Chitsaz F., Derbyshire M.K., Geer L.Y., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Lanczycki C.J., Lu F., Lu S., Marchler G.H., Song J.S., Thanki N., Yamashita R.A., Zhang D. and Bryant S.H. 2012. CDD: Conserved domains and protein three-dimensional structure. Nucleic Acids Research. 41 (Database issue).
- Metzger B.E. and Coustan D.R (Eds.) 1998. Proceedings of the Fourth International Work-shop-Conference on Gestational Diabetes Mellitus. *Diabetes Care*, **21**(Suppl. 2): B1–B167.
- Morre D.M., Lenz G. and Morre D.J. 2000. Surface oxidase and oxidative stress propogation in ageing. *J. Exp. Bio.*, **203**: 1513-1512.
- Morrison A.D., Clements R.S.Jr., Travis S.B., Oski F. and Winegrad A.I. 1970. Glucose utilization by the polyol pathway in human erythrocytes. *Biochem. Biophy. Res Commun.*, **40**: 199-205.
- Nishikawa T., Edelstein D., DuX.L., Yamagishi S., Matsumura T., KanedaY., Yorek, MA, Beebe D., Oates P.J., Hammes H.P, Giardino I. and Brownlee M. 2000. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. *Nature*, 404: 787–790.
- Ojewole J.A. 2005. Hypoglycemic and hypotensive effects of *Psidium guajava* Linn. (Myrtaceae) leaf aqueous extract. *Methods Findings Experiment Clin Pharmacol d.*, **27**: 689-695.
- Ojewole J.A. 2005. Antiinflammatory, analgesic and hypoglycemic effects of *Mangifera indica* Linn. (Anacardiaceae) stem-bark aqueous extract. *Methods Findings Experiment Clin Pharmacol.*, **27:** 547-554.
- Petrash J.M 2004. All in the family: aldose reductase and closely related aldo-keto reductases. *Cell. Mol. Life Sci.*, **61**(7–8): 737–49.
- Reyes B.A., Bautista N.D., Tanquilut N.C., Anunciado R.V., Leung A.B., Sanchez G.C, Magtoto R.L, Castronuevo P, Tsukamura H. and Maeda K.I. 2006. Anti-diabetic potentials of *Momordica charantia* and Andrographis paniculataand their effects on estrous cyclicity of alloxan-induced diabetic rats. J. Ethnopharmacol., **105**: 196-200.

- Nalamolu K.R. and Nammi S. 2006. Anti-diabetic and renoprotective effects of the chloroform extract of *Terminalia chebula* Retz seeds in streptozotocin-induced diabetic rats. *BMC Complement Alternat Med.*, 6: 17.
- Sabitha V., Ramachandran S., Naveen K. R. and Paneerselvam K. 2011. Anti-diabetic and antihyperlipidemic potential of *Abelomoschues esculentus* Moench. in streptozotocininduced diabetic rats, *Journal ListJ Pharm Bioallied Sciv.*, 3(3).
- Sanker T.K., Gislason G.H., Kober L., Rasmussen S., Rasmussen J.N., Abildstrøm S.Z., Hansen M.L., Folke F, Buch P., Madsen M., Vaag A. and Torp-Pedersen C. 2008. Diabetes patients requiring glucose-lowering therapy and nondiabetics with a priormyocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. *Circulation*, **117**: 1945–54.
- Sankeshi V., Anil Kumar P., Ravindar Naik R., Sridhar G., Praveen Kumar M., Hara Gopal V. and Naga Raju T. 2013. Inhibition of aldose reductase by *Aegle marmelos* and its protective role in diabetic cataract, *Journal of Ethonpharmacology*, 149(1, 26): 215-221.
- Saxena A. and Vikram N.K. 2004. Role of selected Indian plants in management of type 2 diabetes: a review. *J Altern Complement Med.*, **10**(2): 369-378.
- Schrijvers B.F., De Vriese A.S. and Flyvbjerg A. 2004. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. *Endocr. Rev.*, 25(6):971–1010.
- Scmidt A.M., Hori O., Brett J., Yan S.D., Wautier L. and Stern D. 1994. Cellular receptor for advanced glycation end products. Implication for induction of oxidant stress and cellualar dysfunction in the pathogenesis of vascular lesions. *Thrombo.*, 14: 1521-1528.
- Sekar D.S., Sivagnanam K. and Subramanian S. 2005. Antidiabetic activity of Momordica charantia seeds on streptozotocin induced diabetic rats. *Pharmazie.*, **60**: 383-387.
- Sharma N. and Garg V. 2009. Anti-diabetic and antioxidant potential of ethanolic extract of *Butea monosperma* leaves in alloxan-induced diabetic mice. *Indian J Biochem Biophys.*, **46**(1): 99-105.
- Singh L.W. 2011. Traditional medicinal plants of Manipur as anti-diabetics. J Med Plant Res., 5(5): 677-687.
- Sofowora A. 1984. Medicinal Plants and Traditional Medicine in Africa Johnwiley, New York, pp. 256-257.
- Spencer EA., Pirie KL., Stevens RJ., Beral V., Brown A., Liu B., Green J. and Reeves G.K. 2008. Diabetes and modifiable risk factors for cardiovascular disease: the prospective Million Women Study. *Eur J Epidemiol.*, 23: 793–99.
- Tolan I., Ragoobir singh D. and Morrison E.Y 2004. Isolation and purification of the hypoglycaemic principle present in *Capsicum Frutescens. Phytother Res.*, **18**(1): 95-96.

- Vikrant A. and Sharma R. 2011. A Review on Fruits Having Anti- Diabetic Potential. J Chem Pharm Res., 3(2): 204-212.
- Wiernsperger N. 2003. Oxidative stress as a therapeutic target in diabetes revisiting the controversy. *Diabetes Metab.*, **29**: 579–585.
- Wild S., Roglic G., Green A., Sicree R. and King H. 2004. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. *Diabetes Care*, **27**: 1047–1053.
- Wolf S.P. and Dean R.T. 1987. Glucose autoxidation and protein modification. The potential role of autoxidation glycosylation in a diabetes, *Biochem. J.*, **245**: 243-250.
- Yabe–Nishimura, C. 1998. Aldose reductase in glucose toxicity : a potential target for the prevention of diabetic complication. *Pharmacol. Rev.*, **50**: 21-33.
- Yadav U.C., Moorthy K. and Baquer N.Z. 2005. Combined treatment of sodium orthovanadate and *Momordica charantia* fruit extract prevents alterations in lipid profile and lipogenic enzymes in alloxan diabetic rats. *Molecular Cellular Bioch.*, **268**: 111-120.