
Economic Affairs, Vol. 70(02), pp. 199-217, June 2025
DOI: 10.46852/0424-2513.2.2025.4

How to cite this article: Radhakrishnan, K., Maniselvam, J., Sri, K.K., 
Prakash, A., Velmurugan, R., Durai, V., Paulpandi, S. and Keerthana, 
S.R. (2025). Economic Impact of Climate Change on Fisheries: Evidence 
from Multi-country Using ARDL Approach. Econ. Aff., 70(02): 199-217.

Source of Support: None; Conflict of Interest: None	

Research Paper

Economic Impact of Climate Change on Fisheries: Evidence 
from Multi-country Using ARDL Approach
Kalidoss Radhakrishnan1*, Jaganathan Maniselvam2, Kota Karuna Sri3,  
Amrutha Prakash4, R Velmurugan1, Varatharajan Durai5, Sivagnanam Paulpandi6 and 
S.R. Keerthana2

1Dr. M.G.R. Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Ponneri, Tamil Nadu, India
2ICAR- Central Institute of Fisheries Education, Mumbai, India
3Department of Agricultural Economics, University of Agricultural Sciences, Bengaluru, India
4ICAR – Central Marine Fisheries Research Institute, Vizhinjam regional Centre, Trivandrum, Kerala, India
5Dr. M.G.R. Fisheries College and Research Institute, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Thalainayeru, Tamil 
Nadu, India
6Krishi Vigyan Kendra, Veterinary College and Research Institute, Namakkal, Tamil Nadu, India
*Corresponding author: theradhakrishnank@gmail.com (ORCID ID: 0000-0001-6790-5195)

	 Received: 14-03-2025	 Revised: 27-05-2025	 Accepted: 05-06-2025

Abstract

Fish GDP has considerable impact from mean temperature, precipitation and CO2 emission over a period 
of time. Here we use empirical findings from three South Asian countries namely Bangladesh, India 
and Thailand for period of 1991-2020 using an Autoregressive distributed lag (ARDL) model. There is a 
significant positive long-term relationship between CO2 and fish GDP for Bangladesh and India, while 
temperature and precipitation show a non-significant negative association. In Thailand, precipitation has 
a significant positive impact on fish GDP, while temperature and CO2 also have positive effects but are 
not statistically significant. The error correction term is highly significant, indicating a strong short run 
adjustment towards long run equilibrium. The fitted models were reliable and stable confirmed using 
econometric analysis. The positive influence of CO2 emissions on fish GDP underscores the need for 
emissions reduction policies and sustainability efforts in India and Bangladesh. By leveraging insights 
from this model, these countries can develop both immediate and long-term strategies to sustain the 
health and productivity of the fisheries sector amidst environmental changes.

Highlights

mm ARDL model quantifies long-term and short-term economic impacts of climate change on fisheries 
in India, Bangladesh, and Thailand

mm CO₂ emissions positively influence fish GDP in Bangladesh and India, necessitating sustainability 
efforts.

mm Temperature and precipitation exhibit a non-significant negative impact on fish GDP in Bangladesh 
and India.

mm A strong short-run adjustment towards long-run equilibrium ensures model reliability.
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Climate change refers to long term alteration in 
earth climate pattern including changes in the 
temperature, precipitation and other climate 
system that occurs naturally but recently which are 
primarily driven by human activities in particular 
burning of fossil fuels, deforestation and industrial 

development (khoshnevis Yazdi & Shakouri, 2010; 
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Lee et al. 2023). The escalation of average global 
temperature in atmosphere is largely instigated by 
emission of greenhouse gases such as carbon dioxide 
(CO₂), methane (CH₄), and nitrous oxide (N₂O) 
(Hussain et al. 2020; Lavell et al. 2012; Li, Cui, Zhang, 
& Zhang, 2024; Li et al. 2024; Murshed et al. 2022; 
Sovacool, Griffiths, Kim, & Bazilian, 2021; Trenberth, 
2011; Usman & Balsalobre-Lorente, 2022; Xi-Liu & 
Qing-Xian, 2018). Changes in precipitation pattern 
mainly affect the ecosystem, agriculture and water 
resources which in turn directly affect the human 
communities (Lal, 2005; Mall, Gupta, Singh, Singh, 
& Rathore, 2006; Piao et al. 2010; Subba, Ma, Ma, 
& Han, 2024; H. Wang et al. 2024; Zhao, Su, Wang, 
Tao, & Jiang, 2021). These climate events heavily 
influence various production sectors, particularly 
the fisheries sector, which is a vital contributor 
to many developing economies that significantly 
augmenting GDP, improving food security and 
provides livelihoods for millions (Allison et al. 
2009; Badjeck, Allison, Halls, & Dulvy, 2010; K. 
M. Brander, 2007; Do et al. 2021; Maulu et al. 2021)
Guinea, Senegal, and Uganda. Fish consumption 
has amplified owing to increased awareness of its 
health benefit with fish serving as a primary source 
of animal protein for about 3 billion people globally 
(FAO, 2024).
Despite, capture fisheries in developing economies 
have reached their maximum sustainable yield and 
the majority of production now comes from culture 
fisheries. Fish production is affected by various 
aspects with growing threats form climate change 
being particularly concerning, leaving 3.3 to 3.6 
billion people highly vulnerable (IPCC, 2022). Since 
1850, global temperatures have increased by 1.1°C, 
altering fish metabolism rates, reducing survival 
rates, and increasing algal blooms (IPCC, 2023). 
Changes in precipitation patterns reduce water 
availability for aquaculture activities (Barange et al. 
2018), disrupt the availability of fish seed (Siddique 
et al. 2022), and decrease water quality, potentially 
leading to higher disease prevalence due to lower 
oxygen levels (Maulu et al. 2021; Sharma et al. 
2014). These climate events ultimately affect the 
distribution, abundance, and productivity of fish 
stocks and aquaculture, leading to a reduction in fish 
production (Burden & Fujita, 2019; Maulu et al. 2021; 
Rijnsdorp, Peck, Engelhard, Möllmann, & Pinnegar, 
2009; Seggel & De Young, 2016). Additionally, 
disease management and the implementation of 

climate adaptation measures further escalate the 
production costs of fish (FAO, 2024; Maulu et al. 
2021). The changes in climate significantly affect the 
fish production leads to reduce the fish availability 
and accessibility for economically vulnerable people 
and income generation also diminish (Barange et al. 
2018; Maulu et al. 2024; Mohammed & Uraguchi, 
2013). The economic consequences of climate 
changes are profound. While much of the research 
has focused on ecological impacts, economic losses 
in the fisheries and aquaculture sector due to climate 
variability have been relatively underexplored. We 
could infer from these studies that understanding 
the economic impact of climate change on fisheries 
is paramount which is subjected to countries 
intensity.
Of the Southeast Asian countries, India, Bangladesh 
and Thailand are significantly contributes to 
fisheries sector, and are also highly vulnerable 
to climate change. For instance, Bangladesh, 
a key player in global fishery production, has 
experienced significant economic losses—around 
140 million US dollars in its aquaculture sector 
due to climate change (Islam et al. 2024). Similarly, 
India, frequently impacted by floods, cyclones, 
droughts, and rising temperatures, is projected 
to see a 24% decrease in agricultural production 
by 2080 due to climate change (Zhai & Zhuang, 
2009). In Thailand, extreme weather conditions 
have negatively impacted short-run macroeconomic 
performance, with the great flood in 2011, triggered 
by the La Nina phenomenon, causing damage to 
the Thai economy amounting to approximately US$ 
6.23 billion (Jatuporn & Takeuchi, 2023). Therefore, 
present study aims to examine the long-term and 
short-term economic impact of climate change on 
fisheries for India, Bangladesh and Thailand, Here, 
Autoregressive Distributed Lag (ARDL) model is 
employed to quantify the long-term and short-
term impacts among the variables, offering robust 
results even in small sample sizes. It is essential 
for understanding the economic ramifications of 
climate change on fisheries and based on the long-
term and short-term effect it guiding for effective 
policy intervention.

Materials and Methods

Data source and variables selection

Historical annual mean temperature (in °C) and 
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precipitation total (in mm) obtained for the period 
1990-2020 from Climate change Knowledge portal, 
World Bank for India, Bangladesh and Thailand. 
The CO2 emission (in MT) sourced from the World 
Development Indicators and the fisheries gross 
domestic product (GDP) was taken from Ministry 
of Fisheries with respective countries for the 
same period. Following recent literature, to assess 
economic impact of climate change on fisheries, 
fish GDP is considered as endogenous variable 
and temperature, precipitation and CO2 emission 
are exogenous variable. Fish GDP capture overall 
economic value generated by the sector, reflecting 
its performance and productivity, quantifying 
economic loss and gain, provide essential insight for 
policy making and long term economic planning.
Temperature plays crucial role both marine and 
inland fish production. Temperature variations 
can influence fish physiology, distribution, and 
ecosystem dynamics, which can impact fish 
production and fisheries management ultimately 
affecting the return generate from fisheries. Changes 
in temperature can reduce the productivity and 
increased vulnerability, especially in low-latitude 
regions and inland fisheries. For instance, elevated 
temperatures can disturb fish reproduction, alter 
spawning periods, and impact on larval development 
and survival. These effects are regulated through 
the endocrine system and can be exacerbated by 
ocean acidification (Pankhurst & Munday, 2011). 
Long-term warming may support more productive 
food webs in subtropical pelagic ecosystems due to 
increased trophic transfer efficiency and primary 
production (Britten & Sibert, 2020). Which indirectly 
affects fish production through alterations in food 
availability and ecosystem dynamics (Brander, 
2010; Gobler et al. 2018). Variations in precipitation 
affects marine fish production by altering habitats 
and primary production rates, which subsequently 
influence fishery catches and biodiversity (Brander, 
2007). Heavy rainfall increases nutrient runoff, 
boosting some fish stocks while others decline 
due to complex food web interactions (Brown et 
al. 2010). Increased precipitation and water levels 
generally favor fish reproduction, recruitment, and 
immigration in inland reservoirs but, heavy rainfall 
can reduce fish catch and catch per unit effort 
(CPUE) due to fish migration to newly inundated 
areas and reduced fishing activities (Patrick, 2016). 

Thus, irregular precipitation patterns, driven by 
climate change, disrupt inland fisheries production 
and management, necessitating adaptive strategies 
for sustainable fisheries (Patrick, 2016).
The influence of CO2 emissions on both marine 
and inland fish production is a critical area of 
study, given the significant role of fisheries in 
global food security and the environment. CO2 
emissions from marine fisheries are substantial, 
significantly impacting on marine ecology and fish 
production (Greer et al. 2019; Mariani et al. 2020; 
Parker et al. 2018; Zhang et al. 2023). The increase 
in emissions is primarily driven by fuel-intensive 
fishing practices (Kristofersson, Gunnlaugsson, 
& Valtysson, 2021) and the removal of large fish, 
which limits blue carbon sequestration (Mariani et 
al. 2020). The development of the marine fishery 
economy and trade increases CO2 emissions, while 
technical advancements and income growth of 
fishermen are negatively related to carbon emissions 
(Zhang et al. 2023). To capture the climate variable 
influence on fish GDP, data transformed by taking 
natural logarithmic to avoid the Multicollinearity 
(Mansfield and Helms, 1982) and Heteroscedasticity 
(Engle, 1982) that produce more reliable and precise 
results (Kılıçarslan & Dumrul, 2017).

Econometric Methodology

1. Model specification

The Autoregressive Distributed Lag (ARDL) is, an 
econometric, model testing the existence of a level 
relationship between an endogenous variable and 
set of regressor (Pesaran, Shin, & Smith, 2001). 
This is developed and applied by (Pesaran et al. 
2001) and the main approach taken from Engle 
and Granger (1987). The ARDL model is developed 
with eight assumptions namely (i) variables are 
integrated of order zero (I(0)) or order one (I(1)), 
but not of order two (I(2)) or higher; (ii) dependent 
variable and independent variables is linear; (iii) 
correctly specified with appropriate lag lengths 
for both dependent and independent variable; 
(iv) no simultaneity bias; (v) homoscedastic and 
no serial correlation; (vi) residuals are normally 
distributed; (vii) stability of relationships; (viii) error 
correction term is stationary. Widely adopted in 
recent times resulting suitability for small sample 
sizes, robustness to model specification, and ease 
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of estimation (Adom, Bekoe, & Akoena, 2012; 
Pesaran et al. 2001). Globally studies performed 
to appraise economic impact of climate change 
on Agriculture in India, Bangladesh, and Nepal 
(Ahmed & Saha, 2023), on rice production in South 
Korea (Nasrullah et al. 2021), on rice productivity in 
Malaysia (Zhang et al. 2023), on cereal production in 
Pakistan (Chandio et al. 2021), on marine fisheries 
in Bangladesh (Begum, Masud, Alam, Mokhtar, & 
Amir, 2022) but paucity studies noticed with respect 
to fisheries. The coefficient estimate in ARDL model 
uses Ordinary Least Squares (OLS) model and is 
well suited to study economic impact of climate 
change on fisheries that specified in the present 
study as below:

FGDPt = f (PRECt, MEANTEMt, CO2t)

The relationship is expressed in logarithmic form 
as follows:

LnFGDPt = α0 + α1 LnPRECt + α2 LnMEANTEMt 
+ α3 LnCO2t + εt

Where LnFGDPt indicate logarithm of fish GDP, 
LnPRECt denotes logarithm of precipitation, 
LnMEANTEMt represent logarithm of mean 
temperature and LnCO2t signifies logarithm of CO2 
emissions.

2. Unit root tests

To avoid spurious regression, it is essential to 
conduct a unit root test. A unit root test is a 
fundamental statistical procedure in time series 
analysis, used to determine whether a series is 
non-stationary and contains a unit root. This step 
is crucial for applying the correct transformations 
and selecting an appropriate model. Stationarity 
is a key assumption in time series modeling, as 
non-stationarity can lead to biased or unreliable 
inferences. There are three unit root test namely (i) 
Augmented Dickey-Fuller (ADF), (ii) Phillips-Perron 
(PP) and (iii) Kwiatkowski-Phillips-Schmidt-Shin 
(KPSS). It is crucial to apply multiple unit root 
tests to determine the integration order of a series, 
as the power of these tests can vary depending on 
the sample size (Raihan & Tuspekova, 2022). In the 
present study, first two methods used to check the 
stationarity of the data. The ADF test refines the 
Dickey-Fuller test by introducing lagged differences 

of the time series, effectively accounting for higher-
order serial correlation in the data (Dickey & Fuller, 
1979). The ADF test was conducted based on the 
following regression equation:

1
1

p

t t t i t i t
i

Y Y Ya b g d e- -
=

D = + + + D +å

where, ∆Yt is the first difference of the variable 
Yt represent a constant term, βt represent the 
coefficient associated with the time trend t, γ is the 
coefficient of the lagged level of the series, δi are 
the coefficients corresponding to the lagged first 
differences, p indicates the number of lagged terms, 
and εt represents the error term.
The Phillips-Perron (PP) test was proposed (Phillips, 
1988) and utilized alongside the ADF test to account 
for serial correlation and heteroskedasticity in the 
error terms through non-parametric adjustments to 
the test statistics (Vogelsang & Wagner, 2013). The 
PP test equation is expressed as follows:

1t t t tY Ya b g e-D = + + +

The presence of a unit root is indicated by a p-value 
greater than 0.05, which suggests that we fail to 
reject the null hypothesis. The null hypothesis 
posits that the time series has a unit root and is non-
stationary, while the alternative hypothesis asserts 
that the time series does not have a unit root and 
is stationary.

3. Cointegration test

The ARDL bounds test, as outlined by (Pesaran et 
al. 2001), was employed to identify cointegration 
among the variables. In this study, the long-
term relationship between LnFGDP, LnPREC, 
LnMEANTEM, and Ln CO2 was assessed using the 
bounds testing approach. The ARDL bounds testing 
model for this analysis is formulated as follows:
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Where, and represents the short and long-run 
coefficients, denotes the constant, and signifies 
optimal lag orders of regress and regressors, 
represents the first difference operator and is the 
white noise error term.
To evaluate the long-run relationship among the 
variables, we established the following hypotheses: 
the null hypothesis (H0) posits no long-run 
association among the variables (α1 = α2 = α3 = α4 
= α5 = α6), while the alternative hypothesis (H1) 
suggests that the parameters (α1 ≠ α2 ≠ α3 ≠ α4 ≠ α5 
≠ α6). The ARDL bounds-testing approach utilizes 
F-statistics to test for long-term cointegration among 
the variables. The F-test statistic is compared against 
two critical thresholds: the lower bound and the 
upper bound. An F-statistic below the lower bound 
indicates no significant long-run relationship, 
while a statistic above the upper bound confirms 
the existence of a long-run relationship. If the 
F-statistic lies between these bounds, the results are 
considered inconclusive (Pesaran et al. 2001).
The ARDL-based Error Correction Model (ECM) 
is employed to capture the short-term dynamics 
among variables, as detailed below:
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Where, ∅0 is intercept, ∅i signifies short-run coefficient, 
ϵt represent error term, and ECTt–1 shows lagged 
residual from the model that determines the long-
term relationship. The error correction method 
explains the speed at which the adjustment takes 
place to long-term equilibrium following a short-
term shock.
The equation demonstrates that fish GDP is affected 
by its own past values, the current and lagged 
values of the regressors, and the lagged error term. 
The parameter ∅ is expected to be negative (between 
0 and -1), reflecting the rate at which equilibrium 
is restored in absolute terms A positive ∅ would 
suggest that the model is out of equilibrium and 
unstable, showing no tendency to revert to the 
long-run equilibrium. The optimal lag lengths for 

each variable were determined using the Akaike 
Information Criterion (AIC).

4. Diagnostic and stability tests

This study employed a series of diagnostic tests to 
assess the model’s reliability and validity (Pesaran 
et al. 2001). To identify serial correlation, we applied 
the Breusch-Godfrey Serial Correlation LM Test, 
which is effective for models with lagged dependent 
variables, thereby enhancing the robustness 
of the model (Breusch, 1978; Godfrey, 1978). 
Heteroscedasticity was evaluated using the Breusch-
Pagan-Godfrey (BPG) test, which helps ensure that 
the variance of residuals is accurately estimated and 
that the model’s estimates remain robust (Breusch & 
Pagan, 1979). The normality of residuals was tested 
with the Jarque-Bera (JB) test, which examines the 
skewness and kurtosis of the residuals to confirm 
whether they follow a normal distribution, thus 
validating the model’s appropriateness (Jarque & 
Bera, 1987). To assess the stability of both long- and 
short-run coefficients, we performed the cumulative 
sum of recursive residuals (CUSUM) test (Brown 
et al. 1975).

5. Granger Causality test

This study also aims to examine the causal 
relat ionship between the variables under 
consideration. The Granger causality test, as 
introduced by Granger (1969), is used to assess 
causality between variables. According to this test, 
if past values of a variable ‘y’ significantly enhance 
the prediction of future values of another variable 
‘x’, then ‘y’ is said to Granger cause ‘x’. A key 
prerequisite for applying the Granger causality test 
is that the time series must be stationary. The same 
has been applied in the present study to determine 
the relationship among the variables of fish GDP 
and climate variables (temperature, precipitation 
and CO2 emission).

Results

Descriptive statistics

Table 1 presents the summary statistics for 
fish GDP, precipitation, temperature, and CO2 
emissions across India, Bangladesh, and Thailand. 
In India, the average fish GDP is 74,736.61, with 
a substantial standard deviation of 82,324.55, 
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indicating considerable variability. The mean 
precipitation and temperature are 1,203.87 mm and 
24.50°C, respectively, with standard deviations of 
163.11 mm and 0.38°C. The average CO2 emissions 
in India are 1.13 kg, with a standard deviation of 
0.38 kg. Bangladesh displays a mean fish GDP of 
29,305.50 and a standard deviation of 24,442.78, 

signifying moderate variability. The average 
precipitation in Bangladesh is 2,264.27 mm, and 
the mean temperature is 25.69°C. CO2 emissions 
average 0.28 kg, with a standard deviation of 
0.15 kg. In Thailand, the average fish GDP is 
100,212.36, accompanied by a moderate standard 
deviation of 18,045.58. The country experiences an 

Table 1: Descriptive statistics

India Bangladesh Thailand
FGDP PREC TEMP CO2 FGDP PREC TEMP CO2 FGDP PREC TEMP CO2

Mean 74736.61 1203.87 24.50 1.13 29305.50 2264.27 25.69 0.28 100212.36 1663.11 26.85 3.10
Standard Error 14785.93 29.30 0.07 0.07 4390.05 55.05 0.06 0.03 3241.08 27.89 0.08 0.12
Median 35182.00 1182.68 24.50 0.98 18890.00 2225.55 25.68 0.23 106091.00 1665.58 26.95 3.32
Standard 
Deviation

82324.55 163.11 0.38 0.38 24442.78 306.50 0.34 0.15 18045.58 155.30 0.42 0.66

Kurtosis 0.71 2.39 -0.21 -1.38 0.65 -0.01 -0.35 -0.93 3.10 0.96 -0.39 -0.20
Skewness 1.37 1.09 -0.02 0.42 1.28 0.56 0.10 0.62 -1.77 -0.29 -0.15 -0.84
Range 283365.00 819.86 1.49 1.15 85815.50 1244.22 1.38 0.49 79946.54 743.63 1.74 2.26
Minimum 5161.00 911.52 23.77 0.65 6006.00 1782.18 24.98 0.10 43128.00 1293.58 25.85 1.59
Maximum 288526.00 1731.38 25.26 1.80 91821.50 3026.40 26.36 0.59 123074.54 2037.21 27.59 3.85
Sum 2316835.00 37319.82 759.46 35.14 908470.41 70192.31 796.27 8.71 3106583.24 51556.29 832.50 96.19
Count 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00
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Fig. 1: Time plot for fish GDP and climate variables (precipitation, temperature and CO2) for India
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average precipitation of 1,663.11 mm and a mean 
temperature of 26.85°C. CO2 emissions average 3.10 
kg for the period from 1991 to 2021. However, the 
logarithmic value of fish GDP and climate variables 

(temperature, precipitation and CO2 emission) for 
India, Bangladesh and Thailand are given in Fig. 
1-3 respectively.
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Fig. 2: Time plot for fish GDP and climate variables (precipitation, temperature and CO2) for Bangladesh
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Unit root test

The Augmented Dickey-Fuller (ADF) test results 
for India demonstrate that the test statistic values 
for fish GDP, precipitation, temperature, and CO2 
emissions are below the 5% critical value, and the 
p-values are less than 0.05 at I(0), leading to the 
rejection of the null hypothesis and confirming 
that the time series data is stationary (Table 2). 
In Bangladesh, both the Phillips-Perron (PP) test 
and ADF test reveal that the test statistic values 
for precipitation, temperature, and CO2 emissions 
exhibit p-values below 0.05 at I(0) and I(1), indicating 
stationarity in the time series data, while the fish 
GDP shows moderate significance. For Thailand, 
both the PP and ADF tests yield significant p-values 
for fish GDP, precipitation, temperature, and CO2 
emissions at I(1), confirming the rejection of the null 
hypothesis and establishing that the time series data 
is stationary.

ARDL bound for cointegration

The ARDL bounds test was employed to ascertain 
the existence of a long-run relationship between 
climate variables and fish GDP in India, Bangladesh, 
and Thailand (Table 3). For India, the F-statistic 
value of 7.447 exceeds the upper critical value 
of 5.23, indicating a statistically significant long-
run relationship (p < 0.001). In Bangladesh, the 
F-statistic of 32.386 surpasses the upper critical 
value of 4.66, robustly suggesting a statistically 
significant long-run relationship (p < 0.001). 
Similarly, Thailand’s F-statistic also exceeds 
the critical value, demonstrating a statistically 
significant long-run relationship (p < 0.001). These 
findings collectively indicate a significant long-run 
relationship between fish GDP and climate variables 
(mean temperature, annual precipitation, and CO2 
emissions) for all three countries. The optimal ARDL 
model for each country was selected based on the 

Table 2:  Unit root tests results.

PP ADF
At level Prob. 1st Diff Prob. At level Prob. 1st Diff Prob.

India LNGDP -2.089 0.531 -3.607 0.047 -5.061 0.002 -2.443 0.350
LNPREC -11.490 0.000 -20.471 0.000 -5.440 0.001 -7.651 0.000
LNTEMP -4.357 0.009 -18.709 0.000 -4.078 0.018 -4.683 0.005
CO2 -1.519 0.800 -1.347 0.855 -4.010 0.022 -0.862 0.944

Bangladesh LNGDP -1.057 0.920 -3.330 0.081 -1.395 0.841 -3.305 0.085
LNPREC -5.402 0.001 -13.417 0.000 -5.402 0.001 -8.968 0.000
LNTEMP -7.227 0.000 -11.033 0.000 -4.334 0.010 -4.663 0.005
LNCO2 -3.053 0.135 -5.373 0.001 -3.153 0.113 -5.301 0.001

Thailand LNGDP -6.284 0.000 -4.776 0.003 -6.210 0.000 -4.766 0.003
LNPREC -3.767 0.033 -15.859 0.000 -3.955 0.022 -4.374 0.010
LNTEMP -7.428 0.000 -17.171 0.000 -5.786 0.000 -4.720 0.005
LNCO2 -2.578 0.292 -4.566 0.006 -2.579 0.292 -9.736 0.000

Table 3: Results of the ARDL Bounds cointegration test

Critical value
F-statistic Value Significance level Lower bound Upper bound

India  7.447 5% 3.38 4.23
1% 4.30 5.23

Bangladesh  32.386 5% 2.79 3.67
1% 3.65 4.66

Thailand 12.344 5% 2.79 3.67
1% 3.65 4.66
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lowest AIC value: ARDL (1, 0, 0, 2) for India (Fig. 
4), ARDL (1, 0, 0, 0) for Bangladesh (Fig. 5), and 
ARDL (1, 2, 2, 0) for Thailand (Fig. 6).

Long-run and short-run estimation

India:  In the long run, the coefficients for 
precipitation and temperature in India were -0.291 
and -1.551, respectively; however, these coefficients 
were not statistically significant (p > 0.05) (Table 4). 

In contrast, the coefficient for CO2 emissions was 
1.588 and was statistically significant (p < 0.01), 
indicating a robust long-term relationship with fish 
GDP. In the short run, the first difference of CO2 
emissions exhibited a positive coefficient of 0.155, 
while the lagged difference of CO2 emissions showed 
a negative coefficient of -0.352, though neither 
was statistically significant (p > 0.05). The error 
correction term was significantly negative (-0.410; 
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p < 0.001), demonstrating a strong adjustment 
mechanism towards long-run equilibrium. The 
model’s R-squared and adjusted R-squared values 
were 0.646 and 0.603, respectively, suggesting a 
good fit. The ARDL model specification (1, 0, 0, 
2) reflects the lag structure used in the analysis. 
These results underscore that CO2 emissions exert 
a significant long-term impact on fish GDP in India, 
with a robust adjustment process to equilibrium in 
the short run
Bangladesh: In long run, the precipitation and 
temperature had negative coefficient value of -0.581 
and -1.885, respectively, statistically not significant 
(P>0.005). The CO2 coefficient (1.686) was found 
to be positive and statistically significant (P<0.05), 
suggesting a strong long term relationship with 
fish GDP (Table 5). In the case of short run, error 
correction term was found negative of -0.073 
(P<0.001), indicating a significant and relatively 

moderate speed of adjustment towards the long-
run equilibrium. The R-squared value (0.173) 
and adjusted R-squared (0.173) showed relatively 
modest fit of the data points. The ARDL model 
specification was (1, 0, 0, 0), reflecting the chosen lag 
structure. Results highlight the significant long-term 
impact of CO2 levels on fish GDP in Bangladesh, 
with a clear mechanism for returning to equilibrium 
in the short run.
Thailand: A significant positive confident of 1.021 
(P<0.01) was observed for the precipitation in long 
run. Contrarily, the coefficients for temperature 
and CO2 coefficients at 5.352 and 0.047, respectively 
and did not differ significantly (P>0.005) (Table 6). 
In short run, the first difference of precipitation 
and its lagged term were not significant (P>0.05), 
with coefficients of 0.019 and -0.104, respectively. 
Conversely, significant first difference of temperature 
and its lagged term coefficients of 1.971 and 1.036, 

Table 4: ARDL and ECM results for India

Long Run
Variable Coefficient Std. Error t-Statistic Prob.
LNPREC -0.291 0.218 -1.334 0.197
LNTEMP -1.551 2.046 -0.758 0.457
CO2 1.588 0.252 6.292 0.000
@TREND 0.062 0.011 5.681 0.000
Short run
D(CO2) 0.155 0.126 1.229 0.233
D(CO2(-1)) -0.352 0.200 -1.760 0.093
ECM(-1) -0.410 0.062 -6.658 0.000
R-squared 0.646
Adjusted R-squared 0.603
ARDL(1, 0, 0, 2)

Table 5: ARDL and ECM results for Bangladesh

Long Run
Variable Coefficient Std. Error t-Statistic Prob.
LNPREC -0.581 1.007 -0.577 0.569
LNTEMP -1.885 10.219 -0.184 0.855
LNCO2 1.686 0.347 4.858 0.000
C 24.126 37.584 0.642 0.527
Short run
ECM(-1) -0.073 0.005 -13.706 0.000
R-squared 0.173
Adjusted R-squared 0.173
ARDL(1, 0, 0, 0)
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respectively, indicating a strong short-term impact 
of temperature changes. The error correction 
term of -0.387 (P<0.001) was observed, suggesting 
significant and relatively rapid adjustment back 
to long-run equilibrium. The model’s R-squared 
and adjusted R-squared of 0.783, and 0.735 was 
noticed respectively, demonstrating a good fit of the 
model. The ARDL model specification was (1, 2, 2, 
0), reflecting the lag structure used in the analysis. 
The precipitation and temperature significantly 
influenced the fish GDP in Thailand in long run and 
in short run respectively, with a robust mechanism 
for adjustment to equilibrium.

Granger causality tests

The CO2 emissions significantly (F = 5.444; P < 0.05) 
influenced the GDP and precipitation (4.097 P = 
0.030) but the GDP influences both precipitation 
(F = 2.960; P = 0.071) and temperature (F = 3.867; P 
= 0.035) with moderate significant for India (Table 
7). Additionally, CO2 levels impact precipitation 
with an F-statistic of 4.097 (p = 0.030). Similarly, 
in Bangladesh, CO2 emissions influenced the 
precipitation (F = 3.657; P = 0.041) and temperature 
(F = 5.761 P = 0.009). The Granger causality analysis 
reveals several unidirectional relationships between 

Table 6: ARDL and ECM results for Thailand

Long Run

Variable Coefficient Std. Error t-Statistic Prob.
LNPREC 1.021 0.348 2.937 0.009
LNTEMP 5.352 3.557 1.504 0.149
LNCO2 0.047 0.276 0.171 0.866
@TREND -0.002 0.008 -0.302 0.766
Short run
C -5.270 0.692 -7.619 0.000
D(LNPREC) 0.019 0.065 0.299 0.768
D(LNPREC(-1)) -0.104 0.063 -1.632 0.119
D(LNTEMP) 1.971 0.527 3.740 0.001
D(LNTEMP(-1)) 1.036 0.492 2.105 0.049
CointEq (-1)* -0.387 0.051 -7.652 0.000
R-squared 0.782692
Adjusted R-squared 0.735451
ARDL(1, 2, 2, 0)

Table 7: Granger Causality

India Bangladesh Thailand
 Null Hypothesis: F-Statistic Prob. F-Statistic Prob. F-Statistic Prob.
 LNPREC does not Granger Cause LNFGDP 0.326 0.725 0.936 0.406 1.588 0.225
 LNFGDP does not Granger Cause LNPREC 2.960 0.071 0.143 0.867 4.835 0.017
 LNTEMP does not Granger Cause LNFGDP 0.101 0.904 0.631 0.541 1.442 0.256
 LNFGDP does not Granger Cause LNTEMP 3.867 0.035 2.901 0.074 0.701 0.506
 CO2 does not Granger Cause LNFGDP 5.444 0.011 1.928 0.167 0.177 0.839
 LNFGDP does not Granger Cause CO2 3.004 0.069 0.516 0.604 1.647 0.214
 LNTEMP does not Granger Cause LNPREC 3.024 0.067 0.210 0.812 2.426 0.110
 LNPREC does not Granger Cause LNTEMP 1.889 0.173 0.388 0.682 0.267 0.768
 CO2 does not Granger Cause LNPREC 4.097 0.030 3.657 0.041 0.766 0.476
 LNPREC does not Granger Cause CO2 1.938 0.166 0.059 0.943 0.779 0.470
 CO2 does not Granger Cause LNTEMP 2.780 0.082 5.761 0.009 1.053 0.364
 LNTEMP does not Granger Cause CO2 0.825 0.450 0.202 0.818 1.370 0.273
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environmental and economic variables in India, 
Bangladesh, and Thailand. In India, CO2 emissions 
significantly influence GDP (LNGDP), with an 
F-statistic of 5.444 (p = 0.011), and GDP influences 
both precipitation (LNPREC) with an F-statistic of 
2.960 (p = 0.071) and temperature (LNTEMP) with 
an F-statistic of 3.867 (p = 0.035). Additionally, 
CO2 levels impact precipitation with an F-statistic 
of 4.097 (p = 0.030). The fish GDP in Thailand 
impacts precipitation, as indicated by an F-statistic 
of 4.835 (p = 0.017). No bidirectional relationships 
were identified, but near-significant bidirectional 
relationships include the influence of GDP on CO2 
in India and the reciprocal influence between GDP 
and temperature in Bangladesh,

Diagnostic and structural stability test

The Breusch-Godfrey test indicates the absence of 
serial correlation for India (F = 2.648; P = 0.097), 
Bangladesh (F = 2.905; P = 0.075), and Thailand (F 
= 2.845; P = 0.086), as the P values exceed the 0.05 
threshold. Fig. 7 further demonstrates that there is 
no evidence of heteroscedasticity, and the residuals 
are normally distributed for India, Bangladesh, 
and Thailand, as suggested by the P values, all of 
which are greater than 0.05. The CUSUM (Fig. 8 for 
India, Fig. 9 for Bangladesh and Fig 10 for Thailand) 
and CUSUM square (Fig. 11 for India, Fig. 12 for 
Bangladesh and Fig. 13 for Thailand) tests were 
administered to verify the parameter consistency 
of the equation underpinning the ARDL model. 
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Fig. 10: Plot of CUSUM test for ARDL model stability for 
Thailand
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Fig. 12: Plot of CUSUM of square test for ARDL model stability 
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The results for fish GDP for India, Bangladesh and 
Thailand in both tests consistently fell within the 5% 
significance threshold over time, thereby affirming 
the robustness and stability of the ARDL model.

Discussion
Climate change significantly affects the fisheries 
sector, with potential impact on both local and 
global economies by reducing the productivity, 
altering species distribution, and decreasing 
potential yields. Many studies have examined the 
effect of climate change on fisheries globally, the 
present sturdy discuss the economic impact of 
climate change on fisheries reference to three highly 
populated Asian Countries.

Temperature

Temperature plays a crucial role in shaping aquatic 
habitats, directly influencing fish production and the 
species that thrive in them. India and Bangladesh 
experience more significant temperature variations 
compared to Thailand, resulting in a negative 
impact on fish GDP for India and Bangladesh, 
whereas Thailand shows a positive impact. The 
average temperature of 26.85°C in Thailand has 
been favorable for fish production, enhancing the 
metabolism and growth rates in species like shrimp 
(421,052 MT), tilapia (206,050 MT), and catfish 
(112,525 MT), which together contribute to about 
three-fourths of the total aquaculture production. 
The hardy nature of tilapia and catfish, along 
with their ability to tolerate a wide range of water 
parameters, supports increased production and 
income generation under warmer conditions. In 
Thailand, a 1% increase in temperature is projected 
to boost fish GDP by 5.35% in the long run. 
Similarly, temperature has also shown a positive 
correlation with the catch of Mullet, Sardinella, and 
Anchovies in Pakistan (Ayub, 2010), and increased 
pelagic fish landings in Malaysia (Ho, Maryam, 
Jafar-Sidik, & Aung, 2013). However, the rising 
temperature has adversely impacted the fisheries 
economics of India and Bangladesh. For instance, 
a 1% increase in temperature could reduce fish 
GDP by 1.55% in India and 1.88% in Bangladesh, 
though not significantly. Indian major carps, such 
as Rohu Catla, and certain shrimp species are 
more vulnerable to heat stress, which could lead 
to reduced fish GDP in the long term, especially 

since most of the major production comes from 
semi-intensive farming, which is susceptible to 
temperature fluctuations.
In Bangladesh, species like pangasius and tilapia, 
mainly reared in semi-intensive systems, experience 
a decrease in growth rates due to lower average 
temperatures, which slows their metabolism. Notably, 
Bangladesh’s shrimp production has recently 
declined by around 6-8% per year. An increase 
in temperature could significantly reduce marine 
fish production by 5.13% in Bangladesh (Begum 
et al. 2022), aligning with current observations. 
Moreover, higher temperatures create favorable 
conditions for pathogens, leading to more frequent 
disease outbreaks in aquaculture systems, which 
increases costs for disease management and results 
in production losses. In marine capture fisheries, 
rising temperatures affect species distribution, as 
seen with oil sardine and Indian mackerel catches 
in Gujarat, India, which are traditionally native to 
Kerala. Additionally, Indian mackerel is now being 
found at greater depths, with the percentage of the 
catch from bottom trawling increasing from 2% to 
15% (CMFRI, 2023). Temperature also significantly 
impacts fish reproduction, with a major shift in 
spawning months from warmer (April-September) 
to cooler months (October-March) observed in 
western India’s Arabian Sea (Vivekanandan, 2010). 
These shifts in fish populations and changes in 
productivity due to temperature fluctuations lead 
to economic losses for local fishing communities. 
Reduced fish stocks and migration, increase the 
operating costs of fishing, impacting seafood 
availability and the supply chain. Overall, these 
studies suggest that rising temperatures will 
generally have a negative economic impact on 
fisheries, with significant reductions in fish yields, 
revenues, and productivity, particularly in tropical 
and low-latitude regions.

Precipitation

The relationship between precipitation and fisheries 
is intricate, involving both direct and indirect 
impacts on fish populations, their habitats, and the 
communities that rely on them. Climate change 
is anticipated to increase rainfall variability, 
leading to more extreme weather events. This 
variability can disrupt fish habitats and affect 
fish productivity, posing significant challenges 
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for fisheries management (Mendenhall et al. 2020; 
Muringai, Mafongoya, & Lottering, 2021). Shifts 
in precipitation patterns due to climate change 
can alter hydrological regimes, impacting fish 
habitats and potentially leading to changes in fish 
community structures (Brander, 2010; Ficke et al. 
2007).
In India and Bangladesh, precipitation has shown 
a negative long-term relationship with fish GDP, 
indicating that a 1% increase in precipitation could 
reduce fish GDP by 0.295% and 0.58%, respectively. 
This contrasts with findings that a 1% increase 
in average precipitation can enhance marine fish 
production in Bangladesh. However, the larger 
variation in precipitation observed in Bangladesh, 
due to geographical disparities within the country, 
has led to a negative relationship (Hossain et al. 
2014). Decreased precipitation and water levels 
can result in reduced fish yields and lower catch 
per unit effort (CPUE), as less favorable conditions 
emerge for fish reproduction and growth (Ng’onga, 
Kalaba, Mwitwa, & Nyimbiri, 2019; Patrick, 2016). 
Climate change projections indicating reduced 
precipitation and water levels are associated 
with significant declines in fish productivity and 
increased challenges for fisheries management 
(Muringai et al. 2021; Ng’onga et al. 2019; Patrick, 
2016). In contrast, in Thailand, a 1% increase in 
precipitation could significantly boost fish GDP 
by 1.02%. Increased precipitation can enhance fish 
recruitment and growth by improving freshwater 
inflows into estuaries, positively affecting fish 
populations and commercial catches (Patrick, 
2016; Stewart, Hughes, Stanley, & Fowler, 2020). 
Precipitation within estuarine catchments is 
positively related to the year-class strength of 
certain fish species, underscoring the importance 
of freshwater input for recruitment success (Stewart 
et al. 2020).

CO2 emissions

CO2 emissions play a crucial role in shaping 
fisheries’ GDP, with both direct and indirect effects 
on the sector. Increased CO2 emissions contribute to 
rising temperatures and ocean acidification, which 
in turn weaken marine ecosystems by disrupting 
food chains, reducing biodiversity, and diminishing 
productivity. These environmental changes lead to 
higher production costs per kilogram of fish and 

reduced fish catches, further exacerbating poverty 
in vulnerable coastal communities by threatening 
their livelihoods and local economies.
Interestingly, a 1% increase in CO2 emissions is 
associated with a significant rise in fish GDP: 1.588% 
for India and 1.686% for Bangladesh, whereas the 
effect in Thailand is marginal at 0.047%. However, 
this relationship is not straightforward. From 1991 
to 2021, CO2 emissions per capita surged from 0.65 
to 1.58 metric tons in India, from 0.10 to 0.51 metric 
tons in Bangladesh, and from 1.59 to 3.71 metric tons 
in Thailand. While no direct studies have examined 
CO2 emissions’ impact on fisheries, analogous 
research in agriculture provides some insights. 
For example, a study in South Korea found that 
increased CO2 emissions could boost rice production 
by up to 0.15% (Nasrullah et al. 2021). Similarly, 
elevated CO2 levels are projected to enhance rice 
production through accelerated photosynthesis, 
potentially increasing yields by 20% (Lv, Huang, 
Sun, Yu, & Zhu, 2020; J. Wang et al. 2015). In 
Bangladesh, the second lag of carbon emissions 
has been shown to positively impact agricultural 
production (Ghosh, Eyasmin, & Adeleye, 2023).
In India, over 80% of marine fish are caught using 
mechanized fishing fleets, which are significant 
sources of CO2 emissions due to their high fuel 
consumption. For instance, trawlers in Palk Bay, 
India, emit the most CO2 (1.823 tonnes of CO2 
per tonne of fish), followed by gillnetters (0.684 
tonnes) and longliners (0.520 tonnes) (Infantina 
et al. 2023). Marine fisheries, particularly trawling 
operations, are major contributors to CO2 emissions. 
For example, China’s marine fisheries exhibited a 
rising and then declining trend in emissions from 
2005 to 2020 (Ng’onga et al. 2019). Globally, marine 
fisheries consumed 40 billion liters of fuel in 2011, 
generating 179 million tonnes of CO2-equivalent 
greenhouse gases, accounting for 4% of global 
food production emissions. Emissions grew by 28% 
between 1990 and 2011, driven by fuel-intensive 
crustacean fisheries (Stewart et al. 2020).
Industrial fishing has seen a significant increase in 
CO2 emissions from 1950 to 2016, with industrial 
emissions intensity surpassing that of small-scale 
fisheries (Mendenhall et al. 2020). The development 
of the marine fishery economy and trade positively 
influences CO2 emissions, while technological 
advancements and income growth among fishermen 
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are associated with lower emissions (Ng’onga et 
al. 2019). Moreover, fishing subsidies, particularly 
those that enhance capacity, are linked to higher 
CO2 emissions, whereas beneficial subsidies have 
the opposite effect (Gamito, Teixeira, Costa, & 
Cabral, 2015). In Iceland, overall catches and fish 
stock abundance are critical factors determining 
emissions, with larger catches and greater 
abundance leading to lower emissions per unit of 
output (Patrick, 2016). Under high CO2 emission 
scenarios, global fisheries revenues could drop by 
35% more than the projected decrease in catches 
by the 2050s, with developing countries being the 
hardest hit (Muringai et al. 2021). This highlights 
the urgent need for sustainable management 
practices to mitigate the impacts of CO2 emissions 
on fisheries and ensure the long-term viability of 
this vital sector.

Conclusion
The study examined the economic impact of climate 
change on fisheries for three Asian countries namely 
India, Bangladesh and Thailand using the data from 
1991 to 2020. In this study, fish GDP is endogenous 
variable while mean temperature, precipitation and 
CO2 emission are exogenous variable. The ADF 
and PP test were applied to check stationarity 
of underlying variables. The ARDL found test 
employed to reconnoitre the long run cointegration 
connection among the studied variables. A series 
of diagnostic tests such as Breusch-Godfrey Serial 
Correlation LM, Breusch-Pagan-Godfrey and Jarque-
Bera were employed to assess the model’s reliability 
and the stability of model was assessed through 
CUSUM test. The ARDL model’s findings of India 
underscore the significant long-term influence of 
CO2 on fish GDP. This highlights the importance 
of emissions reduction policies and sustainability 
efforts. While the fisheries sector shows short-term 
resilience to CO2 fluctuations, policymakers should 
avoid complacency. Leveraging insights from this 
model, they can develop both immediate and 
long-term strategies to maintain sector health and 
productivity in the face of environmental changes.
The ARDL model for Bangladesh indicates that 
CO2 has a significant positive long-term impact 
on the dependent variable. However, temperature 
and precipitation do not exhibit clear long-term 
effects within this model. The strong short-run 

adjustment to equilibrium suggests resilience to 
shocks. Nevertheless, the weak overall model 
fit raises concerns about its explanatory power. 
Policymakers should consider these findings as 
part of a broader analysis, emphasizing improved 
accuracy and a wider range of variables for effective 
policy development. The ARDL model for Thailand 
underscores the crucial impact of precipitation 
on long-term outcomes, while also emphasizing 
the need to address short-term temperature 
fluctuations. The sector’s resilience, signalled by a 
robust adjustment mechanism, is positive. However, 
policymakers must avoid prioritizing short-term 
gains over long-term sustainability. Comprehensive 
water management strategies should consider both 
immediate and delayed effects to ensure the sector’s 
continued health and productivity amid changing 
environmental conditions.
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