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ABSTRACT

Fish GDP has considerable impact from mean temperature, precipitation and CO, emission over a period
of time. Here we use empirical findings from three South Asian countries namely Bangladesh, India
and Thailand for period of 1991-2020 using an Autoregressive distributed lag (ARDL) model. There is a
significant positive long-term relationship between CO, and fish GDP for Bangladesh and India, while
temperature and precipitation show a non-significant negative association. In Thailand, precipitation has
a significant positive impact on fish GDP, while temperature and CO, also have positive effects but are
not statistically significant. The error correction term is highly significant, indicating a strong short run
adjustment towards long run equilibrium. The fitted models were reliable and stable confirmed using
econometric analysis. The positive influence of CO, emissions on fish GDP underscores the need for
emissions reduction policies and sustainability efforts in India and Bangladesh. By leveraging insights
from this model, these countries can develop both immediate and long-term strategies to sustain the
health and productivity of the fisheries sector amidst environmental changes.

HIGHLIGHTS

® ARDL model quantifies long-term and short-term economic impacts of climate change on fisheries

in India, Bangladesh, and Thailand

® CO, emissions positively influence fish GDP in Bangladesh and India, necessitating sustainability

efforts.

@ Temperature and precipitation exhibit a non-significant negative impact on fish GDP in Bangladesh

and India.

@ A strong short-run adjustment towards long-run equilibrium ensures model reliability.
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Climate change refers to long term alteration in
earth climate pattern including changes in the
temperature, precipitation and other climate
system that occurs naturally but recently which are
primarily driven by human activities in particular
burning of fossil fuels, deforestation and industrial

development (khoshnevis Yazdi & Shakouri, 2010;
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Lee et al. 2023). The escalation of average global
temperature in atmosphere is largely instigated by
emission of greenhouse gases such as carbon dioxide
(CO,), methane (CH,4), and nitrous oxide (N,O)
(Hussain et al. 2020; Lavell ef al. 2012; Li, Cui, Zhang,
& Zhang, 2024; Li et al. 2024; Murshed et al. 2022;
Sovacool, Griffiths, Kim, & Bazilian, 2021; Trenberth,
2011; Usman & Balsalobre-Lorente, 2022; Xi-Liu &
Qing-Xian, 2018). Changes in precipitation pattern
mainly affect the ecosystem, agriculture and water
resources which in turn directly affect the human
communities (Lal, 2005; Mall, Gupta, Singh, Singh,
& Rathore, 2006; Piao et al. 2010; Subba, Ma, Ma,
& Han, 2024; H. Wang et al. 2024; Zhao, Su, Wang,
Tao, & Jiang, 2021). These climate events heavily
influence various production sectors, particularly
the fisheries sector, which is a vital contributor
to many developing economies that significantly
augmenting GDP, improving food security and
provides livelihoods for millions (Allison et al.
2009; Badjeck, Allison, Halls, & Dulvy, 2010; K.
M. Brander, 2007; Do et al. 2021; Maulu et al. 2021)
Guinea, Senegal, and Uganda. Fish consumption
has amplified owing to increased awareness of its
health benefit with fish serving as a primary source
of animal protein for about 3 billion people globally
(FAO, 2024).

Despite, capture fisheries in developing economies
have reached their maximum sustainable yield and
the majority of production now comes from culture
fisheries. Fish production is affected by various
aspects with growing threats form climate change
being particularly concerning, leaving 3.3 to 3.6
billion people highly vulnerable (IPCC, 2022). Since
1850, global temperatures have increased by 1.1°C,
altering fish metabolism rates, reducing survival
rates, and increasing algal blooms (IPCC, 2023).
Changes in precipitation patterns reduce water
availability for aquaculture activities (Barange et al.
2018), disrupt the availability of fish seed (Siddique
et al. 2022), and decrease water quality, potentially
leading to higher disease prevalence due to lower
oxygen levels (Maulu et al. 2021; Sharma et al.
2014). These climate events ultimately affect the
distribution, abundance, and productivity of fish
stocks and aquaculture, leading to a reduction in fish
production (Burden & Fujita, 2019; Maulu et al. 2021;
Rijnsdorp, Peck, Engelhard, Méllmann, & Pinnegar,
2009; Seggel & De Young, 2016). Additionally,

disease management and the implementation of
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climate adaptation measures further escalate the
production costs of fish (FAO, 2024; Maulu et al.
2021). The changes in climate significantly affect the
fish production leads to reduce the fish availability
and accessibility for economically vulnerable people
and income generation also diminish (Barange et al.
2018; Maulu et al. 2024; Mohammed & Uraguchi,
2013). The economic consequences of climate
changes are profound. While much of the research
has focused on ecological impacts, economic losses
in the fisheries and aquaculture sector due to climate
variability have been relatively underexplored. We
could infer from these studies that understanding
the economic impact of climate change on fisheries
is paramount which is subjected to countries
intensity.

Of the Southeast Asian countries, India, Bangladesh
and Thailand are significantly contributes to
fisheries sector, and are also highly vulnerable
to climate change. For instance, Bangladesh,
a key player in global fishery production, has
experienced significant economic losses —around
140 million US dollars in its aquaculture sector
due to climate change (Islam ef al. 2024). Similarly,
India, frequently impacted by floods, cyclones,
droughts, and rising temperatures, is projected
to see a 24% decrease in agricultural production
by 2080 due to climate change (Zhai & Zhuang,
2009). In Thailand, extreme weather conditions
have negatively impacted short-run macroeconomic
performance, with the great flood in 2011, triggered
by the La Nina phenomenon, causing damage to
the Thai economy amounting to approximately US$
6.23 billion (Jatuporn & Takeuchi, 2023). Therefore,
present study aims to examine the long-term and
short-term economic impact of climate change on
fisheries for India, Bangladesh and Thailand, Here,
Autoregressive Distributed Lag (ARDL) model is
employed to quantify the long-term and short-
term impacts among the variables, offering robust
results even in small sample sizes. It is essential
for understanding the economic ramifications of
climate change on fisheries and based on the long-
term and short-term effect it guiding for effective
policy intervention.

MATERIALS AND METHODS

Data source and variables selection

Historical annual mean temperature (in °C) and
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precipitation total (in mm) obtained for the period
1990-2020 from Climate change Knowledge portal,
World Bank for India, Bangladesh and Thailand.
The CO, emission (in MT) sourced from the World
Development Indicators and the fisheries gross
domestic product (GDP) was taken from Ministry
of Fisheries with respective countries for the
same period. Following recent literature, to assess
economic impact of climate change on fisheries,
fish GDP is considered as endogenous variable
and temperature, precipitation and CO, emission
are exogenous variable. Fish GDP capture overall
economic value generated by the sector, reflecting
its performance and productivity, quantifying
economic loss and gain, provide essential insight for
policy making and long term economic planning.

Temperature plays crucial role both marine and
inland fish production. Temperature variations
can influence fish physiology, distribution, and
ecosystem dynamics, which can impact fish
production and fisheries management ultimately
affecting the return generate from fisheries. Changes
in temperature can reduce the productivity and
increased vulnerability, especially in low-latitude
regions and inland fisheries. For instance, elevated
temperatures can disturb fish reproduction, alter
spawning periods, and impact on larval development
and survival. These effects are regulated through
the endocrine system and can be exacerbated by
ocean acidification (Pankhurst & Munday, 2011).
Long-term warming may support more productive
food webs in subtropical pelagic ecosystems due to
increased trophic transfer efficiency and primary
production (Britten & Sibert, 2020). Which indirectly
affects fish production through alterations in food
availability and ecosystem dynamics (Brander,
2010; Gobler et al. 2018). Variations in precipitation
affects marine fish production by altering habitats
and primary production rates, which subsequently
influence fishery catches and biodiversity (Brander,
2007). Heavy rainfall increases nutrient runoff,
boosting some fish stocks while others decline
due to complex food web interactions (Brown et
al. 2010). Increased precipitation and water levels
generally favor fish reproduction, recruitment, and
immigration in inland reservoirs but, heavy rainfall
can reduce fish catch and catch per unit effort
(CPUE) due to fish migration to newly inundated
areas and reduced fishing activities (Patrick, 2016).
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Thus, irregular precipitation patterns, driven by
climate change, disrupt inland fisheries production
and management, necessitating adaptive strategies
for sustainable fisheries (Patrick, 2016).

The influence of CO, emissions on both marine
and inland fish production is a critical area of
study, given the significant role of fisheries in
global food security and the environment. CO,
emissions from marine fisheries are substantial,
significantly impacting on marine ecology and fish
production (Greer et al. 2019; Mariani et al. 2020;
Parker et al. 2018; Zhang et al. 2023). The increase
in emissions is primarily driven by fuel-intensive
fishing practices (Kristofersson, Gunnlaugsson,
& Valtysson, 2021) and the removal of large fish,
which limits blue carbon sequestration (Mariani et
al. 2020). The development of the marine fishery
economy and trade increases CO, emissions, while
technical advancements and income growth of
fishermen are negatively related to carbon emissions
(Zhang et al. 2023). To capture the climate variable
influence on fish GDP, data transformed by taking
natural logarithmic to avoid the Multicollinearity
(Mansfield and Helms, 1982) and Heteroscedasticity
(Engle, 1982) that produce more reliable and precise
results (Kiligarslan & Dumrul, 2017).

Econometric Methodology

1. Model specification

The Autoregressive Distributed Lag (ARDL) is, an
econometric, model testing the existence of a level
relationship between an endogenous variable and
set of regressor (Pesaran, Shin, & Smith, 2001).
This is developed and applied by (Pesaran et al.
2001) and the main approach taken from Engle
and Granger (1987). The ARDL model is developed
with eight assumptions namely (i) variables are
integrated of order zero (I(0)) or order one (I(1)),
but not of order two (I(2)) or higher; (ii) dependent
variable and independent variables is linear; (iii)
correctly specified with appropriate lag lengths
for both dependent and independent variable;
(iv) no simultaneity bias; (v) homoscedastic and
no serial correlation; (vi) residuals are normally
distributed; (vii) stability of relationships; (viii) error
correction term is stationary. Widely adopted in
recent times resulting suitability for small sample
sizes, robustness to model specification, and ease
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of estimation (Adom, Bekoe, & Akoena, 2012;
Pesaran et al. 2001). Globally studies performed
to appraise economic impact of climate change
on Agriculture in India, Bangladesh, and Nepal
(Ahmed & Saha, 2023), on rice production in South
Korea (Nasrullah et al. 2021), on rice productivity in
Malaysia (Zhang et al. 2023), on cereal production in
Pakistan (Chandio et al. 2021), on marine fisheries
in Bangladesh (Begum, Masud, Alam, Mokhtar, &
Amir, 2022) but paucity studies noticed with respect
to fisheries. The coefficient estimate in ARDL model
uses Ordinary Least Squares (OLS) model and is
well suited to study economic impact of climate
change on fisheries that specified in the present
study as below:

FGDP. =f (PREC, MEANTEM,, CO, )

The relationship is expressed in logarithmic form
as follows:

LnF GDPt= o+ o LnPRECIJr o, LhMEANTEM,
+a, LnC02t+ g,

Where LnFGDP, indicate logarithm of fish GDP,
LnPREC, denotes logarithm of precipitation,
LnMEANTEM, represent logarithm of mean
temperature and LnCO,, signifies logarithm of CO,
emissions.

2. Unit root tests

To avoid spurious regression, it is essential to
conduct a unit root test. A unit root test is a
fundamental statistical procedure in time series
analysis, used to determine whether a series is
non-stationary and contains a unit root. This step
is crucial for applying the correct transformations
and selecting an appropriate model. Stationarity
is a key assumption in time series modeling, as
non-stationarity can lead to biased or unreliable
inferences. There are three unit root test namely (i)
Augmented Dickey-Fuller (ADF), (ii) Phillips-Perron
(PP) and (iii) Kwiatkowski-Phillips-Schmidt-Shin
(KPSS). It is crucial to apply multiple unit root
tests to determine the integration order of a series,
as the power of these tests can vary depending on
the sample size (Raihan & Tuspekova, 2022). In the
present study, first two methods used to check the
stationarity of the data. The ADF test refines the
Dickey-Fuller test by introducing lagged differences
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of the time series, effectively accounting for higher-
order serial correlation in the data (Dickey & Fuller,
1979). The ADF test was conducted based on the
following regression equation:

P

AY, = a+0,+9Y, +) 6AY,,

i

+ ¢

i=l1

where, AY, is the first difference of the variable
Y, represent a constant term, 3, represent the
coefficient associated with the time trend ¢, y is the
coefficient of the lagged level of the series, d, are
the coefficients corresponding to the lagged first
differences, p indicates the number of lagged terms,
and ¢, represents the error term.

The Phillips-Perron (PP) test was proposed (Phillips,
1988) and utilized alongside the ADF test to account
for serial correlation and heteroskedasticity in the
error terms through non-parametric adjustments to
the test statistics (Vogelsang & Wagner, 2013). The
PP test equation is expressed as follows:

AY; = a+/61 +7Yt—l +€t

The presence of a unit root is indicated by a p-value
greater than 0.05, which suggests that we fail to
reject the null hypothesis. The null hypothesis
posits that the time series has a unit root and is non-
stationary, while the alternative hypothesis asserts
that the time series does not have a unit root and
is stationary.

3. Cointegration test

The ARDL bounds test, as outlined by (Pesaran et
al. 2001), was employed to identify cointegration
among the variables. In this study, the long-
term relationship between LnFGDP, LnPREC,
LnMEANTEM, and Ln CO, was assessed using the
bounds testing approach. The ARDL bounds testing
model for this analysis is formulated as follows:

P q1
oy + 0y Z ALnFGDP,._; + a, Z ALnPREC,_;
i=1
q2 q3
+ o3 Z ALnMEANTEM,_; + o Z ALnCOy,_;

i=1

ALNTFP, =
i=1

i=1
+ v,Lnfgdp._; + y;{LnPREC_;
+v;LnMEANTEM,_; + y;LnCO,,_, + &
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Where, and represents the short and long-run
coefficients, denotes the constant, and signifies
optimal lag orders of regress and regressors,
represents the first difference operator and is the
white noise error term.

To evaluate the long-run relationship among the
variables, we established the following hypotheses:
the null hypothesis (HO) posits no long-run
association among the variables (a, = a, = a, = a,
= a, = a,), while the alternative hypothesis (H1)
suggests that the parameters (o, # a, # o, # a, #
# a,). The ARDL bounds-testing approach utilizes
F-statistics to test for long-term cointegration among
the variables. The F-test statistic is compared against
two critical thresholds: the lower bound and the
upper bound. An F-statistic below the lower bound
indicates no significant long-run relationship,
while a statistic above the upper bound confirms
the existence of a long-run relationship. If the
F-statistic lies between these bounds, the results are
considered inconclusive (Pesaran et al. 2001).

The ARDL-based Error Correction Model (ECM)

is employed to capture the short-term dynamics
among variables, as detailed below:

p q-1
ALnTFP, = @, + @, Z ALnTFP,_; + @, Z ALnPREC,_;
i=1
q-1 q-1
+ 0 Z ALnMEANTEM,_; + @, Z ALnCO,,

i=1

i=1

i=1

+ QECT._, + &

Where, @, is intercept, @, signifies short-run coefficient,
€, represent error term, and ECT, | shows lagged
residual from the model that determines the long-
term relationship. The error correction method
explains the speed at which the adjustment takes
place to long-term equilibrium following a short-
term shock.

The equation demonstrates that fish GDP is affected
by its own past values, the current and lagged
values of the regressors, and the lagged error term.
The parameter @ is expected to be negative (between
0 and -1), reflecting the rate at which equilibrium
is restored in absolute terms A positive @ would
suggest that the model is out of equilibrium and
unstable, showing no tendency to revert to the
long-run equilibrium. The optimal lag lengths for
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each variable were determined using the Akaike
Information Criterion (AIC).

4. Diagnostic and stability tests

This study employed a series of diagnostic tests to
assess the model’s reliability and validity (Pesaran
et al. 2001). To identify serial correlation, we applied
the Breusch-Godfrey Serial Correlation LM Test,
which is effective for models with lagged dependent
variables, thereby enhancing the robustness
of the model (Breusch, 1978; Godfrey, 1978).
Heteroscedasticity was evaluated using the Breusch-
Pagan-Godfrey (BPG) test, which helps ensure that
the variance of residuals is accurately estimated and
that the model’s estimates remain robust (Breusch &
Pagan, 1979). The normality of residuals was tested
with the Jarque-Bera (JB) test, which examines the
skewness and kurtosis of the residuals to confirm
whether they follow a normal distribution, thus
validating the model’s appropriateness (Jarque &
Bera, 1987). To assess the stability of both long- and
short-run coefficients, we performed the cumulative
sum of recursive residuals (CUSUM) test (Brown
et al. 1975).

5. Granger Causality test

This study also aims to examine the causal
relationship between the variables under
consideration. The Granger causality test, as
introduced by Granger (1969), is used to assess
causality between variables. According to this test,
if past values of a variable “y’ significantly enhance
the prediction of future values of another variable
‘x’, then “y’ is said to Granger cause ‘x’. A key
prerequisite for applying the Granger causality test
is that the time series must be stationary. The same
has been applied in the present study to determine
the relationship among the variables of fish GDP
and climate variables (temperature, precipitation
and CO, emission).

RESULTS

Descriptive statistics

Table 1 presents the summary statistics for
fish GDP, precipitation, temperature, and CO,
emissions across India, Bangladesh, and Thailand.
In India, the average fish GDP is 74,736.61, with
a substantial standard deviation of 82,324.55,
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Table 1: Descriptive statistics

India Bangladesh Thailand
FGDP PREC TEMP CO, FGDP PREC TEMP CO, FGDP PREC TEMP CO,
Mean 74736.61  1203.87 2450 1.13 29305.50 2264.27 25.69 0.28 100212.36 1663.11 26.85 3.10
Standard Error 14785.93 29.30 0.07  0.07 4390.05 55.05 0.06 0.03 3241.08 27.89 0.08 0.12
Median 35182.00 1182.68 2450 0.98 18890.00 222555 25.68 0.23 106091.00 1665.58 2695 3.32
Standard 8232455 163.11 0.38 0.38 2444278 306.50 034 015 1804558 15530 042 0.66
Deviation
Kurtosis 0.71 2.39 -0.21  -1.38 0.65 -0.01 -0.35 -093 3.10 0.96 -0.39  -0.20
Skewness 1.37 1.09 -0.02 042 1.28 0.56 010 062 -1.77 -0.29 -0.15 -0.84
Range 283365.00 819.86 1.49 1.15 8581550 124422 1.38 049 7994654 743.63 174 226
Minimum 5161.00 911.52 2377 0.65 6006.00 1782.18 2498 0.10 43128.00 1293.58 25.85 1.59
Maximum 288526.00 1731.38 25.26 1.80 9182150 3026.40 26.36 0.59 123074.54 2037.21 2759 3.85
Sum 2316835.00 37319.82 759.46 35.14 908470.41 7019231 796.27 8.71  3106583.24 51556.29 832.50 96.19
Count 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00
InGDP Inprec
13 75
i 7.4
7.3
4 7.2
104 7.1
7.0
9
6.9
8 — 6.8 —
1995 2000 2005 2010 2015 2020 1995 2000 2005 2010 2015 2020
Intemp CO2
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3.21 1 1.6
3.20 ] 1.4
3.19] 1.2
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1995 2000 2005 2010 2015 2020 1995 2000 2005 2010 2015 2020

Fig. 1: Time plot for fish GDP and climate variables (precipitation, temperature and CO,) for India

indicating considerable variability. The mean
precipitation and temperature are 1,203.87 mm and
24.50°C, respectively, with standard deviations of
163.11 mm and 0.38°C. The average CO, emissions
in India are 1.13 kg, with a standard deviation of
0.38 kg. Bangladesh displays a mean fish GDP of
29,305.50 and a standard deviation of 24,442.78,
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signifying moderate variability. The average
precipitation in Bangladesh is 2,264.27 mm, and
the mean temperature is 25.69°C. CO, emissions
average 0.28 kg, with a standard deviation of
0.15 kg. In Thailand, the average fish GDP is
100,212.36, accompanied by a moderate standard
deviation of 18,045.58. The country experiences an
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average precipitation of 1,663.11 mm and a mean
temperature of 26.85°C. CO, emissions average 3.10
kg for the period from 1991 to 2021. However, the
logarithmic value of fish GDP and climate variables

AESSRA

(temperature, precipitation and CO, emission) for
India, Bangladesh and Thailand are given in Fig.
1-3 respectively.

InGDP Inprec
1.5 8.1
11.0 8.0
7.9
10.5
7.8
10.0
7.7
9.5 |
7.6
904 7.5
8.5 —— 74 S N —
1995 2000 2005 2010 2015 2020 1995 2000 2005 2010 2015 2020
Intemp Inco2
3.28 0.4
3.27 -
0.8
3.26
3.25- 124
3.24 - 1.6
3.23
2.0
3.22 |
3.21 —— 3
1995 2000 2005 2010 2015 2020 1995 2000 2005 2010 2015 2020
Fig. 2: Time plot for fish GDP and climate variables (precipitation, temperature and CO,) for Bangladesh
INnGDP Inprec
11.8 77
11.6 -| 7.6
11.4 | 7.5
11.2 | 7.4
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1995 2000 2005 2010 2015 2020 1995 2000 2005 2010 2015 2020
Intemp Inco2
13.32 1.4
3.31 |
1.2
3.30 |
5.29 | 1.0
3.28 | 08 |
.27 |
0.6 -|
3.26 |
3.25 ————— 0.4 N
1995 2000 2005 2010 2015 2020 1995 2000 2005 2010 2015 2020

Fig. 3: Time plot for fish GDP and climate variables (precipitation, temperature and CO,) for Thailand
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Unit root test

The Augmented Dickey-Fuller (ADF) test results
for India demonstrate that the test statistic values
for fish GDP, precipitation, temperature, and CO,
emissions are below the 5% critical value, and the
p-values are less than 0.05 at I(0), leading to the
rejection of the null hypothesis and confirming
that the time series data is stationary (Table 2).
In Bangladesh, both the Phillips-Perron (PP) test
and ADF test reveal that the test statistic values
for precipitation, temperature, and CO, emissions
exhibit p-values below 0.05 at I(0) and I(1), indicating
stationarity in the time series data, while the fish
GDP shows moderate significance. For Thailand,
both the PP and ADF tests yield significant p-values
for fish GDP, precipitation, temperature, and CO,
emissions at I(1), confirming the rejection of the null
hypothesis and establishing that the time series data
is stationary.

ARDL bound for cointegration

The ARDL bounds test was employed to ascertain
the existence of a long-run relationship between
climate variables and fish GDP in India, Bangladesh,
and Thailand (Table 3). For India, the F-statistic
value of 7.447 exceeds the upper critical value
of 5.23, indicating a statistically significant long-
run relationship (p < 0.001). In Bangladesh, the
F-statistic of 32.386 surpasses the upper critical
value of 4.66, robustly suggesting a statistically
significant long-run relationship (p < 0.001).
Similarly, Thailand’s F-statistic also exceeds
the critical value, demonstrating a statistically
significant long-run relationship (p < 0.001). These
findings collectively indicate a significant long-run
relationship between fish GDP and climate variables
(mean temperature, annual precipitation, and CO,
emissions) for all three countries. The optimal ARDL
model for each country was selected based on the

Table 2: Unit root tests results.

PP ADF
At level Prob. 1st Diff Prob. At level Prob. 1st Diff  Prob.
India LNGDP -2.089 0.531 -3.607 0.047 -5.061 0.002 -2.443 0.350
LNPREC -11.490 0.000 -20.471 0.000 -5.440 0.001 -7.651 0.000
LNTEMP -4.357 0.009 -18.709 0.000 -4.078 0.018 -4.683 0.005
CO, -1.519 0.800 -1.347 0.855 -4.010 0.022 -0.862 0.944
Bangladesh LNGDP -1.057 0.920 -3.330 0.081 -1.395 0.841 -3.305 0.085
LNPREC -5.402 0.001 -13.417 0.000 -5.402 0.001 -8.968 0.000
LNTEMP -7.227 0.000 -11.033 0.000 -4.334 0.010 -4.663 0.005
LNCO, -3.053 0.135 -5.373 0.001 -3.153 0.113 -5.301 0.001
Thailand LNGDP -6.284 0.000 -4.776 0.003 -6.210 0.000 -4.766 0.003
LNPREC -3.767 0.033 -15.859 0.000 -3.955 0.022 -4.374 0.010
LNTEMP -7.428 0.000 -17.171 0.000 -5.786 0.000 -4.720 0.005
LNCO, -2.578 0.292 -4.566 0.006 -2.579 0.292 -9.736 0.000
Table 3: Results of the ARDL Bounds cointegration test
Critical value
F-statistic Value Significance level Lower bound Upper bound
India 7.447 5% 3.38 4.23
1% 4.30 5.23
Bangladesh 32.386 5% 2.79 3.67
1% 3.65 4.66
Thailand 12.344 5% 2.79 3.67
1% 3.65 4.66
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lowest AIC value: ARDL (1, 0, 0, 2) for India (Fig.
4), ARDL (1, 0, 0, 0) for Bangladesh (Fig. 5), and
ARDL (1, 2, 2, 0) for Thailand (Fig. 6).

Long-run and short-run estimation

India: In the long run, the coefficients for
precipitation and temperature in India were -0.291
and -1.551, respectively; however, these coefficients
were not statistically significant (p > 0.05) (Table 4).
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In contrast, the coefficient for CO, emissions was
1.588 and was statistically significant (p < 0.01),
indicating a robust long-term relationship with fish
GDP. In the short run, the first difference of CO,
emissions exhibited a positive coefficient of 0.155,
while the lagged difference of CO, emissions showed
a negative coefficient of -0.352, though neither
was statistically significant (p > 0.05). The error
correction term was significantly negative (-0.410;

Akaike Information Criteria (top 20 models) Akaike Information Criteria (top 20 models)
13.15 T — ‘ 13.20 T T — ‘
Lo R S A T A N [ !
BEREE R IR I A A I
}}}}\\\}\\-3.247 }‘}“}}}}}‘l
13.25 }}}}}}}}ll }}}}}}}ll¢+
| [ S R I .
330 | i } } } } l | 13.28 | } } i l 1 [
| | |
Lo \ \
13.35 I A 13.32 | Lol
i o }
13.40 |
13.36
F3.45 -
13.50 - 13.40 |
-355 A‘A‘A‘A‘A A‘A‘A‘A‘AAA‘A‘A‘A A‘A‘A‘A‘A -344 T T T T T T T T T T T T T T T T T T T
o~ ~ o~ o~ ~ N N o~ ~ ~ ~ N o~ ~ o~ o - ol oo "~~~ "~ ~ —~ —~ —~ —~ —~ —~ —~ ~—~ ~ ~—~ ~—~ ~ o~ ~
S - ~~dadodada~<da<~a«~<a S oS e e needn m o e e A
S S v v a <SS “ad<~d <o oS o« e"eeedn T o e T Ne =<2
B e R R IERE———...—...~, S e e e o e - Ao o - A
oooobobobobobobbooboooooooao D i S i i S i Sl i e S e Sl Sl e Sl i i S
T T E T E TR ETEETZTEZEER EEEEREREERERREERERREREEREREREREER R
T < € <€ <€ € € <€ € € <€ <€ <€ <€ <€ <€ <€ <€ < < T rxxrrxrxxxrrr
Fig. 4: AIC model selection for India Fig. 5: AIC model selection for Bangladesh
Akaike Information Criteria (top 20 models)
132 :
3.20 T i T T T i T 7 7 T i | i
EERERRRR RN
| | | [
At T O B O
I | | I l |
I T T T T T A R B
330411 | L IR AR | |
[ | [ N T I
A O R e
-3.3571 : | I : T I : | } [
| | [
e A
sa0 ! 1 | I Iy
BA by
I R A Do
Lo R R S S
345 1 : | : I V
Lo [
| | | I l v v v
k3504 I |
Vool |
-355 T T T T T T T T T T T T T T T T T T
O - T o odNodNoOo--+FT-dN+-dN+-«" W« oo
N ada ada a -~ o d oS - - o - o o - o - o o«
N A~ - aN NN~ - - N NN~ - - - o o
e e S S S S S S S S S S S S S S S
0O 000000 Q000 Q0000000 Q0aoaAQ
r rr oK oK o o oeov o oerv o ooeeeowroerow o x o©
L€ L€ € € L€ L€ L <€ L L <€ L L€ <€ L < L L <€ <L
Fig. 6: AIC model selection for Thailand
Print ISSN : 0424-2513 207 Online ISSN : 0976-4666



&  Radhakrishnan et al.

AESSRA

Table 4: ARDL and ECM results for India

Long Run
Variable Coefficient Std. Error t-Statistic Prob.
LNPREC -0.291 0.218 -1.334 0.197
LNTEMP -1.551 2.046 -0.758 0.457
CO, 1.588 0.252 6.292 0.000
@TREND 0.062 0.011 5.681 0.000
Short run
D(CO,) 0.155 0.126 1.229 0.233
D(CO,(-1)) -0.352 0.200 -1.760 0.093
ECM(-1) -0.410 0.062 -6.658 0.000
R-squared 0.646
Adjusted R-squared 0.603
ARDL(L, 0, 0, 2)

Table 5: ARDL and ECM results for Bangladesh

Long Run
Variable Coefficient Std. Error t-Statistic Prob.
LNPREC -0.581 1.007 -0.577 0.569
LNTEMP -1.885 10.219 -0.184 0.855
LNCO, 1.686 0.347 4.858 0.000
C 24126 37.584 0.642 0.527
Short run
ECM(-1) -0.073 0.005 -13.706 0.000
R-squared 0.173
Adjusted R-squared 0.173
ARDL(1, 0, 0, 0)

p < 0.001), demonstrating a strong adjustment
mechanism towards long-run equilibrium. The
model’s R-squared and adjusted R-squared values
were 0.646 and 0.603, respectively, suggesting a
good fit. The ARDL model specification (1, 0, 0,
2) reflects the lag structure used in the analysis.
These results underscore that CO, emissions exert
a significant long-term impact on fish GDP in India,
with a robust adjustment process to equilibrium in
the short run

Bangladesh: In long run, the precipitation and
temperature had negative coefficient value of -0.581
and -1.885, respectively, statistically not significant
(P>0.005). The CO, coefficient (1.686) was found
to be positive and statistically significant (’<0.05),
suggesting a strong long term relationship with
fish GDP (Table 5). In the case of short run, error
correction term was found negative of -0.073
(P<0.001), indicating a significant and relatively
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moderate speed of adjustment towards the long-
run equilibrium. The R-squared value (0.173)
and adjusted R-squared (0.173) showed relatively
modest fit of the data points. The ARDL model
specification was (1, 0, 0, 0), reflecting the chosen lag
structure. Results highlight the significant long-term
impact of CO, levels on fish GDP in Bangladesh,
with a clear mechanism for returning to equilibrium
in the short run.

Thailand: A significant positive confident of 1.021
(P<0.01) was observed for the precipitation in long
run. Contrarily, the coefficients for temperature
and CQO, coefficients at 5.352 and 0.047, respectively
and did not differ significantly (P>0.005) (Table 6).
In short run, the first difference of precipitation
and its lagged term were not significant (P>0.05),
with coefficients of 0.019 and -0.104, respectively.
Conversely, significant first difference of temperature
and its lagged term coefficients of 1.971 and 1.036,
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Table 6: ARDL and ECM results for Thailand

Long Run
Variable Coefficient Std. Error t-Statistic Prob.
LNPREC 1.021 0.348 2.937 0.009
LNTEMP 5.352 3.557 1.504 0.149
LNCO, 0.047 0.276 0.171 0.866
@TREND -0.002 0.008 -0.302 0.766
Short run
C -5.270 0.692 -7.619 0.000
D(LNPREC) 0.019 0.065 0.299 0.768
D(LNPREC(-1)) -0.104 0.063 -1.632 0.119
D(LNTEMP) 1.971 0.527 3.740 0.001
D(LNTEMP(-1)) 1.036 0.492 2.105 0.049
CointEq (-1)* -0.387 0.051 -7.652 0.000
R-squared 0.782692
Adjusted R-squared 0.735451
ARDL(, 2,2, 0)
Table 7: Granger Causality
India Bangladesh Thailand
Null Hypothesis: F-Statistic ~ Prob. F-Statistic Prob.  F-Statistic Prob.
LNPREC does not Granger Cause LNFGDP 0.326 0.725 0.936 0.406 1.588 0.225
LNFGDP does not Granger Cause LNPREC 2.960 0.071 0.143 0.867  4.835 0.017
LNTEMP does not Granger Cause LNFGDP 0.101 0.904 0.631 0.541 1.442 0.256
LNFGDP does not Granger Cause LNTEMP 3.867 0.035 2.901 0.074 0.701 0.506
CO, does not Granger Cause LNFGDP 5.444 0.011 1.928 0.167  0.177 0.839
LNFGDP does not Granger Cause CO, 3.004 0.069 0.516 0.604 1.647 0.214
LNTEMP does not Granger Cause LNPREC 3.024 0.067 0.210 0.812 2426 0.110
LNPREC does not Granger Cause LNTEMP 1.889 0.173 0.388 0.682 0.267 0.768
CQO, does not Granger Cause LNPREC 4.097 0.030 3.657 0.041 0.766 0.476
LNPREC does not Granger Cause CO, 1.938 0.166 0.059 0.943 0.779 0.470
CQO, does not Granger Cause LNTEMP 2.780 0.082 5.761 0.009 1.053 0.364
LNTEMP does not Granger Cause CO, 0.825 0.450 0.202 0.818 1.370 0.273

respectively, indicating a strong short-term impact
of temperature changes. The error correction
term of -0.387 (P<0.001) was observed, suggesting
significant and relatively rapid adjustment back
to long-run equilibrium. The model’s R-squared
and adjusted R-squared of 0.783, and 0.735 was
noticed respectively, demonstrating a good fit of the
model. The ARDL model specification was (1, 2, 2,
0), reflecting the lag structure used in the analysis.
The precipitation and temperature significantly
influenced the fish GDP in Thailand in long run and
in short run respectively, with a robust mechanism
for adjustment to equilibrium.
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Granger causality tests

The CO, emissions significantly (F = 5.444; P < 0.05)
influenced the GDP and precipitation (4.097 P =
0.030) but the GDP influences both precipitation
(F=2.960; P =0.071) and temperature (F = 3.867; P
= 0.035) with moderate significant for India (Table
7). Additionally, CO, levels impact precipitation
with an F-statistic of 4.097 (p = 0.030). Similarly,
in Bangladesh, CO, emissions influenced the
precipitation (F = 3.657; P = 0.041) and temperature
(F=5.761 P =0.009). The Granger causality analysis
reveals several unidirectional relationships between
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environmental and economic variables in India,
Bangladesh, and Thailand. In India, CO, emissions
significantly influence GDP (LNGDP), with an
F-statistic of 5.444 (p = 0.011), and GDP influences
both precipitation (LNPREC) with an F-statistic of
2.960 (p = 0.071) and temperature (LNTEMP) with
an F-statistic of 3.867 (p = 0.035). Additionally,
CO, levels impact precipitation with an F-statistic
of 4.097 (p = 0.030). The fish GDP in Thailand
impacts precipitation, as indicated by an F-statistic
of 4.835 (p = 0.017). No bidirectional relationships
were identified, but near-significant bidirectional
relationships include the influence of GDP on CO,
in India and the reciprocal influence between GDP
and temperature in Bangladesh,

Diagnostic and structural stability test

The Breusch-Godfrey test indicates the absence of
serial correlation for India (F = 2.648; P = 0.097),
Bangladesh (F = 2.905; P = 0.075), and Thailand (F
= 2.845; P = 0.086), as the P values exceed the 0.05
threshold. Fig. 7 further demonstrates that there is
no evidence of heteroscedasticity, and the residuals
are normally distributed for India, Bangladesh,
and Thailand, as suggested by the P values, all of
which are greater than 0.05. The CUSUM (Fig. 8 for
India, Fig. 9 for Bangladesh and Fig 10 for Thailand)
and CUSUM square (Fig. 11 for India, Fig. 12 for
Bangladesh and Fig. 13 for Thailand) tests were
administered to verify the parameter consistency
of the equation underpinning the ARDL model.

Normality test
m Heteroskedasticity Test: Breusch-Pagan-Godfrey
Breusch-Godfrey Serial Correlation LM Test:
0.335
Thailand 0.468
0.086
banglades 0.394
h 0.214
0.075
0.479
India 0.214
0.097
T T T
0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50
F-statistic

Fig.7: The clustered bar shows the F statistic of different ARDL model diagnostic tests and values presented in the data label is the p
value of the respective test. All there test were not statistically significant because the observed p value greater than 0.05
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Fig. 8: Plot of CUSUM test for ARDL model stability for India

Print ISSN : 0424-2513

210 Online ISSN : 0976-4666



Economic Impact of Climate Change on Fisheries: Evidence from Multi-country Using ARDL Approach ¢
AESSRA
15 15
o4 04
5 I
0 0
R 5] -
T [
\\\\\\\ 110 S
-15 T T T T T T T T T T T T T T T T T T T T T T T T
98 00 02 04 06 08 10 12 14 16 18 20 15 T T T T T T T T T T T T
2004 2006 2008 2010 2012 2014 2016 2018 2020
[ — cusum - 5% Significance |
[ —— CUSUM  ———-- 5% Significance ‘

Fig. 9: Plot of CUSUM test for ARDL model stability for
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Fig. 11: Plot of CUSUM of square test for ARDL model stability
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Fig. 13: Plot of CUSUM of square test for ARDL model stability for Thailand
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Fig. 12: Plot of CUSUM of square test for ARDL model stability

Online ISSN : 0976-4666



&  Radhakrishnan et al.

AESSRA

The results for fish GDP for India, Bangladesh and
Thailand in both tests consistently fell within the 5%
significance threshold over time, thereby affirming
the robustness and stability of the ARDL model.

DISCUSSION

Climate change significantly affects the fisheries
sector, with potential impact on both local and
global economies by reducing the productivity,
altering species distribution, and decreasing
potential yields. Many studies have examined the
effect of climate change on fisheries globally, the
present sturdy discuss the economic impact of
climate change on fisheries reference to three highly
populated Asian Countries.

Temperature

Temperature plays a crucial role in shaping aquatic
habitats, directly influencing fish production and the
species that thrive in them. India and Bangladesh
experience more significant temperature variations
compared to Thailand, resulting in a negative
impact on fish GDP for India and Bangladesh,
whereas Thailand shows a positive impact. The
average temperature of 26.85°C in Thailand has
been favorable for fish production, enhancing the
metabolism and growth rates in species like shrimp
(421,052 MT), tilapia (206,050 MT), and catfish
(112,525 MT), which together contribute to about
three-fourths of the total aquaculture production.
The hardy nature of tilapia and catfish, along
with their ability to tolerate a wide range of water
parameters, supports increased production and
income generation under warmer conditions. In
Thailand, a 1% increase in temperature is projected
to boost fish GDP by 5.35% in the long run.
Similarly, temperature has also shown a positive
correlation with the catch of Mullet, Sardinella, and
Anchovies in Pakistan (Ayub, 2010), and increased
pelagic fish landings in Malaysia (Ho, Maryam,
Jafar-Sidik, & Aung, 2013). However, the rising
temperature has adversely impacted the fisheries
economics of India and Bangladesh. For instance,
a 1% increase in temperature could reduce fish
GDP by 1.55% in India and 1.88% in Bangladesh,
though not significantly. Indian major carps, such
as Rohu Catla, and certain shrimp species are
more vulnerable to heat stress, which could lead
to reduced fish GDP in the long term, especially

Print ISSN : 0424-2513

212

since most of the major production comes from
semi-intensive farming, which is susceptible to
temperature fluctuations.

In Bangladesh, species like pangasius and tilapia,
mainly reared in semi-intensive systems, experience
a decrease in growth rates due to lower average
temperatures, which slows their metabolism. Notably,
Bangladesh’s shrimp production has recently
declined by around 6-8% per year. An increase
in temperature could significantly reduce marine
fish production by 5.13% in Bangladesh (Begum
et al. 2022), aligning with current observations.
Moreover, higher temperatures create favorable
conditions for pathogens, leading to more frequent
disease outbreaks in aquaculture systems, which
increases costs for disease management and results
in production losses. In marine capture fisheries,
rising temperatures affect species distribution, as
seen with oil sardine and Indian mackerel catches
in Gujarat, India, which are traditionally native to
Kerala. Additionally, Indian mackerel is now being
found at greater depths, with the percentage of the
catch from bottom trawling increasing from 2% to
15% (CMFRI, 2023). Temperature also significantly
impacts fish reproduction, with a major shift in
spawning months from warmer (April-September)
to cooler months (October-March) observed in
western India’s Arabian Sea (Vivekanandan, 2010).
These shifts in fish populations and changes in
productivity due to temperature fluctuations lead
to economic losses for local fishing communities.
Reduced fish stocks and migration, increase the
operating costs of fishing, impacting seafood
availability and the supply chain. Overall, these
studies suggest that rising temperatures will
generally have a negative economic impact on
fisheries, with significant reductions in fish yields,
revenues, and productivity, particularly in tropical
and low-latitude regions.

Precipitation

The relationship between precipitation and fisheries
is intricate, involving both direct and indirect
impacts on fish populations, their habitats, and the
communities that rely on them. Climate change
is anticipated to increase rainfall variability,
leading to more extreme weather events. This
variability can disrupt fish habitats and affect
fish productivity, posing significant challenges

Online ISSN : 0976-4666



Economic Impact of Climate Change on Fisheries: Evidence from Multi-country Using ARDL Approach ¢

for fisheries management (Mendenhall et al. 2020;
Muringai, Mafongoya, & Lottering, 2021). Shifts
in precipitation patterns due to climate change
can alter hydrological regimes, impacting fish
habitats and potentially leading to changes in fish
community structures (Brander, 2010; Ficke et al.
2007).

In India and Bangladesh, precipitation has shown
a negative long-term relationship with fish GDP,
indicating that a 1% increase in precipitation could
reduce fish GDP by 0.295% and 0.58%, respectively.
This contrasts with findings that a 1% increase
in average precipitation can enhance marine fish
production in Bangladesh. However, the larger
variation in precipitation observed in Bangladesh,
due to geographical disparities within the country,
has led to a negative relationship (Hossain et al.
2014). Decreased precipitation and water levels
can result in reduced fish yields and lower catch
per unit effort (CPUE), as less favorable conditions
emerge for fish reproduction and growth (Ng’onga,
Kalaba, Mwitwa, & Nyimbiri, 2019; Patrick, 2016).
Climate change projections indicating reduced
precipitation and water levels are associated
with significant declines in fish productivity and
increased challenges for fisheries management
(Muringai et al. 2021; Ng'onga et al. 2019; Patrick,
2016). In contrast, in Thailand, a 1% increase in
precipitation could significantly boost fish GDP
by 1.02%. Increased precipitation can enhance fish
recruitment and growth by improving freshwater
inflows into estuaries, positively affecting fish
populations and commercial catches (Patrick,
2016; Stewart, Hughes, Stanley, & Fowler, 2020).
Precipitation within estuarine catchments is
positively related to the year-class strength of
certain fish species, underscoring the importance
of freshwater input for recruitment success (Stewart
et al. 2020).

CO, emissions

CO, emissions play a crucial role in shaping
fisheries” GDP, with both direct and indirect effects
on the sector. Increased CO, emissions contribute to
rising temperatures and ocean acidification, which
in turn weaken marine ecosystems by disrupting
food chains, reducing biodiversity, and diminishing
productivity. These environmental changes lead to
higher production costs per kilogram of fish and
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reduced fish catches, further exacerbating poverty
in vulnerable coastal communities by threatening
their livelihoods and local economies.

Interestingly, a 1% increase in CO, emissions is
associated with a significant rise in fish GDP: 1.588%
for India and 1.686% for Bangladesh, whereas the
effect in Thailand is marginal at 0.047%. However,
this relationship is not straightforward. From 1991
to 2021, CO, emissions per capita surged from 0.65
to 1.58 metric tons in India, from 0.10 to 0.51 metric
tons in Bangladesh, and from 1.59 to 3.71 metric tons
in Thailand. While no direct studies have examined
CO, emissions” impact on fisheries, analogous
research in agriculture provides some insights.
For example, a study in South Korea found that
increased CO, emissions could boost rice production
by up to 0.15% (Nasrullah et al. 2021). Similarly,
elevated CO, levels are projected to enhance rice
production through accelerated photosynthesis,
potentially increasing yields by 20% (Lv, Huang,
Sun, Yu, & Zhu, 2020; J. Wang et al. 2015). In
Bangladesh, the second lag of carbon emissions
has been shown to positively impact agricultural
production (Ghosh, Eyasmin, & Adeleye, 2023).

In India, over 80% of marine fish are caught using
mechanized fishing fleets, which are significant
sources of CO, emissions due to their high fuel
consumption. For instance, trawlers in Palk Bay,
India, emit the most CO, (1.823 tonnes of CO,
per tonne of fish), followed by gillnetters (0.684
tonnes) and longliners (0.520 tonnes) (Infantina
et al. 2023). Marine fisheries, particularly trawling
operations, are major contributors to CO, emissions.
For example, China’s marine fisheries exhibited a
rising and then declining trend in emissions from
2005 to 2020 (Ng'onga et al. 2019). Globally, marine
fisheries consumed 40 billion liters of fuel in 2011,
generating 179 million tonnes of CO,-equivalent
greenhouse gases, accounting for 4% of global
food production emissions. Emissions grew by 28%
between 1990 and 2011, driven by fuel-intensive
crustacean fisheries (Stewart et al. 2020).

Industrial fishing has seen a significant increase in
CO, emissions from 1950 to 2016, with industrial
emissions intensity surpassing that of small-scale
fisheries (Mendenhall et al. 2020). The development
of the marine fishery economy and trade positively
influences CO, emissions, while technological
advancements and income growth among fishermen
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are associated with lower emissions (Ng'onga et
al. 2019). Moreover, fishing subsidies, particularly
those that enhance capacity, are linked to higher
CO, emissions, whereas beneficial subsidies have
the opposite effect (Gamito, Teixeira, Costa, &
Cabral, 2015). In Iceland, overall catches and fish
stock abundance are critical factors determining
emissions, with larger catches and greater
abundance leading to lower emissions per unit of
output (Patrick, 2016). Under high CO, emission
scenarios, global fisheries revenues could drop by
35% more than the projected decrease in catches
by the 2050s, with developing countries being the
hardest hit (Muringai et al. 2021). This highlights
the urgent need for sustainable management
practices to mitigate the impacts of CO, emissions
on fisheries and ensure the long-term viability of
this vital sector.

CONCLUSION

The study examined the economic impact of climate
change on fisheries for three Asian countries namely
India, Bangladesh and Thailand using the data from
1991 to 2020. In this study, fish GDP is endogenous
variable while mean temperature, precipitation and
CO, emission are exogenous variable. The ADF
and PP test were applied to check stationarity
of underlying variables. The ARDL found test
employed to reconnoitre the long run cointegration
connection among the studied variables. A series
of diagnostic tests such as Breusch-Godfrey Serial
Correlation LM, Breusch-Pagan-Godfrey and Jarque-
Bera were employed to assess the model’s reliability
and the stability of model was assessed through
CUSUM test. The ARDL model’s findings of India
underscore the significant long-term influence of
CO, on fish GDP. This highlights the importance
of emissions reduction policies and sustainability
efforts. While the fisheries sector shows short-term
resilience to CO, fluctuations, policymakers should
avoid complacency. Leveraging insights from this
model, they can develop both immediate and
long-term strategies to maintain sector health and
productivity in the face of environmental changes.

The ARDL model for Bangladesh indicates that
CO, has a significant positive long-term impact
on the dependent variable. However, temperature
and precipitation do not exhibit clear long-term
effects within this model. The strong short-run
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adjustment to equilibrium suggests resilience to
shocks. Nevertheless, the weak overall model
fit raises concerns about its explanatory power.
Policymakers should consider these findings as
part of a broader analysis, emphasizing improved
accuracy and a wider range of variables for effective
policy development. The ARDL model for Thailand
underscores the crucial impact of precipitation
on long-term outcomes, while also emphasizing
the need to address short-term temperature
fluctuations. The sector’s resilience, signalled by a
robust adjustment mechanism, is positive. However,
policymakers must avoid prioritizing short-term
gains over long-term sustainability. Comprehensive
water management strategies should consider both
immediate and delayed effects to ensure the sector’s
continued health and productivity amid changing
environmental conditions.
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