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ABSTRACT

The present study was focused to build a predictive model for protein coding genes from the rumen metagenomic data utilising 
most promising machine learning (ML) tools. We classified the sequence reads into coding genes and non-coding sequences, 
converted the sequences into k-mers of various sizes (k = three to six) and extracted features named k-mer count that were 
representative of the sequence reads. ML classifiers were trained using 16 genomes consisted of 13 bacterial kingdom and 3 
archaeal kingdom selected from diverse environment and various systems. Among the five ML models for gene prediction, 
artificial neural network (ANN) performed best with maximum accuracy 89 per cent for k-mer three. We observed that logistic 
regression and SVMtook only reasonable computational time when compared to ANN.DNA was isolated from rumen liquor of 
crossbred cattle and were used for metagenomic sequencing. Annotated rumen metagenomic sequences was used to validate the 
ML models created. Logistic regression performed best with 85 per cent accuracy on minimum feature count itself (unigram) 
for k-mer four. Out of 8718 coding sequences provided to logistic regression classifier, 8073 sequences correctly predicted as 
genes (true positives) and remaining 645 coding sequences were predicted as non-coding (false negatives). We concluded that 
machine learning models created namely artificial neural network, support vector machine and logistic regression shows strong, 
robust and powerful ability for classification of coding and non-coding genes and it represents an intriguing and promising 
avenue for predicting rumen metagenomic genes.

HIGHLIGHTS

mm Classification of sequence into coding and non-coding based on k-mers.
mm Machine learning models for gene prediction in metagenomic DNA fragments.
mm Validation of the models using bovine rumen metagenomic sequences.
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The microbial diversity in most environments exceeds the 
biodiversity of plants and animals by orders of magnitude 
(Hoff et al., 2009). Relative to eukaryotic genomes, 
prokaryotic genomes are small and structurally simple, 
with ninety per cent of their DNA typically devoted to 
protein-coding genes (Sommer and Salzberg, 2021). 
The ruminal microbial population was characterized by 
complexity of interactions and dominated in number by 
bacteria (McSweeney et al., 2001). It has been estimated 

that only a small proportion of organisms in nature can 
be cultured using standard cultivation methods (Wooley et 
al., 2010). In order to facilitate the study of uncultivated 
micro-organisms a new field known as ‘metagenomics’, 
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has emerged in the area of genetic research (Thomas et 
al., 2012).

One of the largest challenges in the field of bioinformatics 
is the need for a mechanism to transform the raw data into 
a format that could be classified by a machine learning 
algorithm in an accurate way (Kaehler, 2017). Machine 
learning has been used broadly in biological studies for 
prediction and discovery. Massive and rapid advancements 
in both biological data generation and machine learning 
methodologies are promising for the analysis and 
discovery from complex biological data (Xu and Jackson, 
2019). Over the past decade, there had been a steady 
increase in studies utilizing machine learning algorithms 
for various aspects of functional prediction, because 
these algorithms were able to integrate large amounts of 
heterogeneous data and detect patterns inconspicuous 
through rule-based approaches (Mahood et al., 2020). 
Machine learning techniques played an important role in 
solving metagenomic problems such as gene prediction 
and comparative metagenomics analysis (Soueidan and 
Nikolski, 2017).

Gene prediction is the problem of identifying the portions 
of DNA sequence that are biologically functional. The 
first step towards successful genome annotation is gene 
prediction (Goel et al., 2013. Gene prediction from 
bovine rumen metagenomics is a necessary step to fully 
understand the functions, activities and roles of microbial 
genes in cellular processes. Accurate gene prediction 
in metagenomes is more complicated than in isolated 
genomes (Hyatt et al., 2012). The source genomes of 
the metagenomic fragments are always unknown or 
totally new, which brings challenge on statistical model 
construction and feature selection (Liu et al., 2013). In 
this context, the present study was focused to build a 
predictive model for protein coding genes from the rumen 
metagenomic data utilising most promising machine 
learning tools.

MATERIALS AND METHODS

Our approach was to classify the sequence reads into either 
coding genes or non-coding sequences by converting 
the sequences into k-mers of various sizes (k = three to 
six) and extracting features named k-mer count that are 
representative of the sequence reads. For a particular 
k-mer, different order n-grams were included as a part 

of feature extraction. N-grams started from (1, 1) which 
was unigram, (1, 2) which included both unigram and 
bigram, (1, 3) included combination of unigram, bigram 
and trigram. Likewise up to N-gram (1, 6) were included 
in current study to obtain the continuity of features and 
to found out the optimum N-gram suitable for the ML 
models.

Machine learning approach

Our machine learning approach for gene prediction in 
metagenomic DNA fragments is based on learning the 
characteristics of coding and non-coding regions from 16 
fully sequenced prokaryotic genomes and their GenBank 
annotation for protein coding genes. These 16 genomes 
consisted of 13 bacterial kingdom and 3 archeal kingdom 
selected from diverse environment and various systems. 
In the current study features were the k-mer counts and 
the target attribute (label) was discrete values namely zero 
and one where zero represented non-coding sequences and 
one represented protein coding genes. Sequence features 
were extracted using different combination of n-gram up 
to hexagram. Our goal was to empirically evaluate how 
well the standard machine learning algorithms perform in 
classifying metagenomic data.

Rumen metagenome sequence data

Here we used rumen metagenome sequence data to 
validate the ML models created. For that, rumen samples 
were collected from five HF crossbred cattle as detailed 
below which were maintained on standard ration (forage: 
concentrate ratio of 50:50).

DNA isolation

Rumen liquor (both solid and liquid fractions) were 
collected from the rumen of each crossbred cattle, three 
hours after morning feeding. The DNA was isolated from 
rumen liquor of crossbred cattle using cetyl trimethyl 
ammonium bromide (CTAB) based buffer for cell lysis 
followed by purification with phenol: chloroform: isoamyl 
alcohol. The isolated metagenomic DNA samples were 
pooled and were used for metagenomic sequencing.

The de novo assembly of the adapter trimmed fastq files 
was carried out using MetaSPAdes (v 3.10.1), which could 
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be utilised optionally and independently for different 
processing and assembly steps. The contigs obtained from 
the assembly were used as input to software tool prokka (v 
1.14.6) for the prediction of open reading frames (ORFs), 
which was used to identify the coding regions and to 
distinguish them from noncoding DNA. Prokka used 
Prodigal for the ORF predictions. Total 51,430 contigs 
(contig length varies from 39463 bp to 918 bp) were used 
for gene prediction. Using prokka, 70,631 sequences were 
predicted as coding sequences.

Training datasets

Out of 31,208 sequence data fetched from RefSeq 
databases, 15,580 were coding sequences. 15,628 ORF 
like but non coding sequences were generated from the 
inter-genic region so that a balanced data of coding and 
non-coding sequences were made. We used an 80-20 split 
of the sequence data obtained from RefSeq databases, 
where 80% of the data was used for training and 20% of 
the data was used as the test set to found the efficiency of 
the machine learning model created. Out of 31,208 total 
sequences, 24966 (80 percent) sequences were used for 
training the model and 6242 (20 percent) for testing the 
model. The machine learning classifier is evaluated on 
how well it classified the test set based on the learned 
concept.

Validation of test datasets

For validating the ML classifiers, annotated rumen 
metagenomic sequences obtained were used. Out of 70631 
coding sequences obtained 8718 coding sequences were 
selected randomly. A total of 17456 sequences including 
8738 non coding sequences were used for validation.

Model selection and evaluation

We used three well-known supervised learners- logistic 
regression, support vector machine (SVM) and artificial 
neural network (ANN) and their performances in 
predicting coding sequences were assessed. In this study, 
we have used the metrics namely accuracy, precision, 
recall and F score to evaluate the model performance. 
True positives (TP) are the number of positive examples 
classified as positive. False negatives (FN) are the number 
of positive examples which are classified as negatives. 

True negatives (TN) are the number of negative examples 
which are classified as negative. False positives (FP) are 
the number of negative examples which are classified as 
positive.

Accuracy = TP + TN / (TP + FN + TN + FP)

RESULTS AND DISCUSSION

Training data evaluation

Machine learning approach for gene prediction in 
metagenomic DNA fragments was based on learning the 
characteristics of coding and non-coding regions from the 
16 fully sequenced prokaryotic genomes which was used 
as training data for ML. Models were evaluated in terms of 
accuracy to know whether the selected models had good 
performance or not before validating the model using 
rumen metagenomic sequenced data. We have computed 
the experiments for different k ranging from three to six. 
For a particular k-mer, number of features depends on 
different combination of n-grams.

Table 1: Machine learning model evaluation - Comparison of 
different k-mer for particular ML

ML tool K-mer size No. of features 
(Range)

Accuracy 
(Range)

Logistic 
regression

three 64 - 65536 0.84 - 0.88
four 256 - 349425 0.85 - 0.88
five 1024 - 1394501 0.85 - 0.87
six 4096 - 5249988 0.83 - 0.87

Support vector 
machine

three 64 - 65536 0.83- 0.88
four 256 - 349425 0.85 - 0.88
five 1024 - 1394501 0.84 - 0.87
six 4096 - 5249988 0.83 - 0.87

Artificial neural 
network

three 64 - 65536 0.86 - 0.89
four 256 - 349425 0.85 - 0.88
five 1024 - 1394501 0.84 - 0.88
six 4096 - 5249988 0.85 - 0.88

Comparison of different k-mer for particular ML

For the training data, the machine learning classifiers were 
evaluated on how well they classified the test set based 
on the learned concept. Accuracies of the five different 
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machine learning models created along with k-mers used 
were represented in table 1. Number of features varied 
for different k-mers. As k-mer size increased, number 
of features also increased. Among the five ML models, 
artificial neural network performed best with maximum 
accuracy 89 per cent for k-mer three. Current study showed 
that maximum accuracy could be attained on k-mer size 
three itself with minimum feature count on artificial 
neural network. Advantage was that we could overcome 
the computational issues created by more and more 
feature counts. Feature count could be increased by both 
increase in k-mer size and by more number of n-grams. 
In performance, just behind artificial neural network was 
logistic regression and support vector machine both of 
which had maximum accuracy of 88 percent for k-mer 
size four.

Validation of ML models with rumen whole 
metagenomic sequenced data

A total of 51,430 contigs were obtained from the 
assembly of reads obtained from rumen whole genome 
sequenced data. Metagenomic sequences were annotated 
to obtain 70,631 protein coding sequences. The annotation 
information obtained from rumen whole metagenomic 
sequence data were used as an input for the validation 
study of the machine learning models built.

Comparison of different k-mer for particular ML

Accuracies of different k-mers (k = 3 to 6) versus different 
combination of n-grams were plotted in line graphs for 
three machine learning models to found out the best 
k-mers and their corresponding n-gram combinations on 
gene prediction.

Comparison of different k-mer for Logistic Regression

In case of logistic regression, overall accuracy ranged 
from 76 per cent to 85 per cent. While comparing different 
k-mers, overall performance was in the order k-mer three 
to six where k-mer three performed best. For k-mers three, 
four and five, unigram performed best when compared 
to other n-gram combinations. There was no point in 
increasing the feature count by more n-gram combination 
in case of logistic regression. Extraction of more features 
such as pentagram, hexagram etc. and running the ML 

was comparatively tedious and time consuming. Here the 
advantage was that computational issues were minimum. 
85.10 percent accuracy was the highest accuracy provided 
by logistic regression. This was obtained in k-mer four 
at unigram. K-mer six was found not much efficient for 
logistic regression in the given study.
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Fig. 1: Accuracies of Logistic regression classifier for different 
k-mer sizes

Comparison of different k-mer for support vector 
machine

For support vector machine, overall accuracy ranged from 
75.80 per cent to 84 per cent. Accuracy was highest for 
k-mer size three at (1, 3) and lowest for k-mer size six 
at n-gram combination (1, 2). K-mer size four performed 
well in n-gram (1, 3) having accuracy of 81.20 percent. 
K-mer size five and six also had good accuracy in unigram 
itself (82.80 per cent and 81.30 per cent). 
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So computationally it was found very effective. We were 
able to achieve better accuracies with minimum feature 
count in case of k-mer five and six. Here for SVM 
classifier, it was difficult to say which k-mer performed 
best in gene prediction because all the four k-mers (k = 3 
to 6) had their own good performance either in unigram (1, 
1) or in combination up to trigram (1, 3).

Comparison of different k-mer for Artificial Neural 
Network

For artificial neural network, overall accuracy ranged 
from 75 per cent to 82.50 per cent. Accuracy was highest 
for k-mer size three at (1, 4) and lowest for k-mer size 
six at n-gram combination (1, 6). For k-mer size three 
n-gram combination (1, 4) was found better option for 
gene prediction and for k-mer size four, (1, 2) had the 
highest accuracy (81.60 percent). In the case of k-mer 
five and six, minimum feature frequency itself produced 
better accuracies with values 81.60 per cent and 82.40 per 
cent respectively. In k-mer six, huge decline in accuracy 
noticed in (1, 2) when compared to (1, 1). There was no 
meaning in increasing features by more and more n-gram 
combinations. As we know, artificial neural network 
needed more computational power and time when 
compared to others. So better performance in unigram 
itself (k-mer five and six) as showed in the current study 
will save computational power and time for the gene 
prediction problems.

 1 

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)

A
cc
ur
ac
y

Ngram

Predicted data ‐ Artificial Neural Network

Kmer size =3

Kmer size =4

Kmer size =5

kmer size =6

Fig. 3: Accuracies of Artificial Neural Network for different 
k-mer sizes

CONCLUSION

The motivation behind this work is to see how various 
machine learning classifiers performs by predicting 
genes in metagenomic DNA fragments. We addressed an 
important problem in the field of bioinformatics, which 
is to discriminate open reading frame (ORF) from the 
non-coding sequences. Identification of genes directly 
from metagenomic fragments is an important task in 
annotating metagenomes. In the current study, we used a 
diverse approach in classification of the sequence reads 
by converting the sequences into k-mers and extracted 
features named k-mer count. Various feature size were 
used in the study by applying different combination of 
continuous n-grams along with single n-gram for k-mers. 
Feature extraction and feature selection are important step 
toward enhancing the gene prediction process. Our future 
works will investigate the application of more and more 
diverse features for gene prediction from metagenomic 
DNA fragments. Large scale machine learning methods 
are well-suited for gene prediction in metagenomic DNA 
fragments. We concludes that machine learning algorithms 
namely artificial neural network, support vector machine 
and logistic regression shows strong, robust and powerful 
ability for classification of coding and non-coding genes 
and it represents an intriguing and promising avenue for 
predicting rumen metagenomic genes.
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