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ABSTRACT

The present study was focused to build a predictive model for protein coding genes from the rumen metagenomic data utilising
most promising machine learning (ML) tools. We classified the sequence reads into coding genes and non-coding sequences,
converted the sequences into k-mers of various sizes (k = three to six) and extracted features named k-mer count that were
representative of the sequence reads. ML classifiers were trained using 16 genomes consisted of 13 bacterial kingdom and 3
archaeal kingdom selected from diverse environment and various systems. Among the five ML models for gene prediction,
artificial neural network (ANN) performed best with maximum accuracy 89 per cent for k-mer three. We observed that logistic
regression and SVMtook only reasonable computational time when compared to ANN.DNA was isolated from rumen liquor of
crossbred cattle and were used for metagenomic sequencing. Annotated rumen metagenomic sequences was used to validate the
ML models created. Logistic regression performed best with 85 per cent accuracy on minimum feature count itself (unigram)
for k-mer four. Out of 8718 coding sequences provided to logistic regression classifier, 8073 sequences correctly predicted as
genes (true positives) and remaining 645 coding sequences were predicted as non-coding (false negatives). We concluded that
machine learning models created namely artificial neural network, support vector machine and logistic regression shows strong,
robust and powerful ability for classification of coding and non-coding genes and it represents an intriguing and promising
avenue for predicting rumen metagenomic genes.

HIGHLIGHTS

O Classification of sequence into coding and non-coding based on k-mers.
© Machine learning models for gene prediction in metagenomic DNA fragments.
@ Validation of the models using bovine rumen metagenomic sequences.
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The microbial diversity in most environments exceeds the
biodiversity of plants and animals by orders of magnitude
(Hoff et al, 2009). Relative to eukaryotic genomes,
prokaryotic genomes are small and structurally simple,
with ninety per cent of their DNA typically devoted to
protein-coding genes (Sommer and Salzberg, 2021).
The ruminal microbial population was characterized by
complexity of interactions and dominated in number by
bacteria (McSweeney ef al., 2001). It has been estimated

that only a small proportion of organisms in nature can
be cultured using standard cultivation methods (Wooley et
al., 2010). In order to facilitate the study of uncultivated
micro-organisms a new field known as ‘metagenomics’,
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has emerged in the area of genetic research (Thomas et
al., 2012).

One of the largest challenges in the field of bioinformatics
is the need for a mechanism to transform the raw data into
a format that could be classified by a machine learning
algorithm in an accurate way (Kaehler, 2017). Machine
learning has been used broadly in biological studies for
prediction and discovery. Massive and rapid advancements
in both biological data generation and machine learning
methodologies are promising for the analysis and
discovery from complex biological data (Xu and Jackson,
2019). Over the past decade, there had been a steady
increase in studies utilizing machine learning algorithms
for various aspects of functional prediction, because
these algorithms were able to integrate large amounts of
heterogeneous data and detect patterns inconspicuous
through rule-based approaches (Mahood et al., 2020).
Machine learning techniques played an important role in
solving metagenomic problems such as gene prediction
and comparative metagenomics analysis (Soueidan and
Nikolski, 2017).

Gene prediction is the problem of identifying the portions
of DNA sequence that are biologically functional. The
first step towards successful genome annotation is gene
prediction (Goel et al, 2013. Gene prediction from
bovine rumen metagenomics is a necessary step to fully
understand the functions, activities and roles of microbial
genes in cellular processes. Accurate gene prediction
in metagenomes is more complicated than in isolated
genomes (Hyatt et al, 2012). The source genomes of
the metagenomic fragments are always unknown or
totally new, which brings challenge on statistical model
construction and feature selection (Liu et al, 2013). In
this context, the present study was focused to build a
predictive model for protein coding genes from the rumen
metagenomic data utilising most promising machine
learning tools.

MATERIALS AND METHODS

Our approach was to classify the sequence reads into either
coding genes or non-coding sequences by converting
the sequences into k-mers of various sizes (k = three to
six) and extracting features named k-mer count that are
representative of the sequence reads. For a particular
k-mer, different order n-grams were included as a part
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of feature extraction. N-grams started from (1, 1) which
was unigram, (1, 2) which included both unigram and
bigram, (1, 3) included combination of unigram, bigram
and trigram. Likewise up to N-gram (1, 6) were included
in current study to obtain the continuity of features and
to found out the optimum N-gram suitable for the ML
models.

Machine learning approach

Our machine learning approach for gene prediction in
metagenomic DNA fragments is based on learning the
characteristics of coding and non-coding regions from 16
fully sequenced prokaryotic genomes and their GenBank
annotation for protein coding genes. These 16 genomes
consisted of 13 bacterial kingdom and 3 archeal kingdom
selected from diverse environment and various systems.
In the current study features were the k-mer counts and
the target attribute (label) was discrete values namely zero
and one where zero represented non-coding sequences and
one represented protein coding genes. Sequence features
were extracted using different combination of n-gram up
to hexagram. Our goal was to empirically evaluate how
well the standard machine learning algorithms perform in
classifying metagenomic data.

Rumen metagenome sequence data

Here we used rumen metagenome sequence data to
validate the ML models created. For that, rumen samples
were collected from five HF crossbred cattle as detailed
below which were maintained on standard ration (forage:
concentrate ratio of 50:50).

DNA isolation

Rumen liquor (both solid and liquid fractions) were
collected from the rumen of each crossbred cattle, three
hours after morning feeding. The DNA was isolated from
rumen liquor of crossbred cattle using cetyl trimethyl
ammonium bromide (CTAB) based buffer for cell lysis
followed by purification with phenol: chloroform: isoamyl
alcohol. The isolated metagenomic DNA samples were
pooled and were used for metagenomic sequencing.

The de novo assembly of the adapter trimmed fastq files
was carried out using MetaSPAdes (v 3.10.1), which could
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be utilised optionally and independently for different
processing and assembly steps. The contigs obtained from
the assembly were used as input to software tool prokka (v
1.14.6) for the prediction of open reading frames (ORFs),
which was used to identify the coding regions and to
distinguish them from noncoding DNA. Prokka used
Prodigal for the ORF predictions. Total 51,430 contigs
(contig length varies from 39463 bp to 918 bp) were used
for gene prediction. Using prokka, 70,631 sequences were
predicted as coding sequences.

Training datasets

Out of 31,208 sequence data fetched from RefSeq
databases, 15,580 were coding sequences. 15,628 ORF
like but non coding sequences were generated from the
inter-genic region so that a balanced data of coding and
non-coding sequences were made. We used an 80-20 split
of the sequence data obtained from RefSeq databases,
where 80% of the data was used for training and 20% of
the data was used as the test set to found the efficiency of
the machine learning model created. Out of 31,208 total
sequences, 24966 (80 percent) sequences were used for
training the model and 6242 (20 percent) for testing the
model. The machine learning classifier is evaluated on
how well it classified the test set based on the learned
concept.

Validation of test datasets

For wvalidating the ML classifiers, annotated rumen
metagenomic sequences obtained were used. Out of 70631
coding sequences obtained 8718 coding sequences were
selected randomly. A total of 17456 sequences including
8738 non coding sequences were used for validation.

Model selection and evaluation

We used three well-known supervised learners- logistic
regression, support vector machine (SVM) and artificial
neural network (ANN) and their performances in
predicting coding sequences were assessed. In this study,
we have used the metrics namely accuracy, precision,
recall and F score to evaluate the model performance.
True positives (TP) are the number of positive examples
classified as positive. False negatives (FN) are the number
of positive examples which are classified as negatives.
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True negatives (TN) are the number of negative examples
which are classified as negative. False positives (FP) are
the number of negative examples which are classified as
positive.

Accuracy=TP + TN /(TP + FN + TN + FP)

RESULTS AND DISCUSSION

Training data evaluation

Machine learning approach for gene prediction in
metagenomic DNA fragments was based on learning the
characteristics of coding and non-coding regions from the
16 fully sequenced prokaryotic genomes which was used
as training data for ML. Models were evaluated in terms of
accuracy to know whether the selected models had good
performance or not before validating the model using
rumen metagenomic sequenced data. We have computed
the experiments for different k ranging from three to six.
For a particular k-mer, number of features depends on
different combination of n-grams.

Table 1: Machine learning model evaluation - Comparison of
different k-mer for particular ML

No. of features Accurac
ML tool K-mer size (Range) (Range) Y
three 64 - 65536 0.84 - 0.88
Logistic four 256 - 349425 0.85-0.88
regression five 1024 - 1394501 0.85-0.87
Six 4096 - 5249988 0.83-0.87
three 64 - 65536 0.83-0.88
Support vector four 256 - 349425 0.85-0.88
machine five 1024 - 1394501 0.84 - 0.87
six 4096 - 5249988 0.83-0.87
three 64 - 65536 0.86 - 0.89
Artificial neural four 256 - 349425 0.85-0.88
network five 1024 - 1394501 0.84 - 0.88
Six 4096 - 5249988 0.85-0.88

Comparison of different k-mer for particular ML

For the training data, the machine learning classifiers were
evaluated on how well they classified the test set based
on the learned concept. Accuracies of the five different
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machine learning models created along with k-mers used
were represented in table 1. Number of features varied
for different k-mers. As k-mer size increased, number
of features also increased. Among the five ML models,
artificial neural network performed best with maximum
accuracy 89 per cent for k-mer three. Current study showed
that maximum accuracy could be attained on k-mer size
three itself with minimum feature count on artificial
neural network. Advantage was that we could overcome
the computational issues created by more and more
feature counts. Feature count could be increased by both
increase in k-mer size and by more number of n-grams.
In performance, just behind artificial neural network was
logistic regression and support vector machine both of
which had maximum accuracy of 88 percent for k-mer
size four.

Validation of ML models
metagenomic sequenced data

with rumen whole

A total of 51,430 contigs were obtained from the
assembly of reads obtained from rumen whole genome
sequenced data. Metagenomic sequences were annotated
to obtain 70,631 protein coding sequences. The annotation
information obtained from rumen whole metagenomic
sequence data were used as an input for the validation
study of the machine learning models built.

Comparison of different k-mer for particular ML

Accuracies of different k-mers (k = 3 to 6) versus different
combination of n-grams were plotted in line graphs for
three machine learning models to found out the best
k-mers and their corresponding n-gram combinations on
gene prediction.

Comparison of different k-mer for Logistic Regression

In case of logistic regression, overall accuracy ranged
from 76 per cent to 85 per cent. While comparing different
k-mers, overall performance was in the order k-mer three
to six where k-mer three performed best. For k-mers three,
four and five, unigram performed best when compared
to other n-gram combinations. There was no point in
increasing the feature count by more n-gram combination
in case of logistic regression. Extraction of more features
such as pentagram, hexagram etc. and running the ML
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was comparatively tedious and time consuming. Here the
advantage was that computational issues were minimum.
85.10 percent accuracy was the highest accuracy provided
by logistic regression. This was obtained in k-mer four
at unigram. K-mer six was found not much efficient for
logistic regression in the given study.

Predicted data- Logistic Regression
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Fig. 1: Accuracies of Logistic regression classifier for different
k-mer sizes

Comparison of different k-mer for support vector
machine

For support vector machine, overall accuracy ranged from
75.80 per cent to 84 per cent. Accuracy was highest for
k-mer size three at (1, 3) and lowest for k-mer size six
at n-gram combination (1, 2). K-mer size four performed
well in n-gram (1, 3) having accuracy of 81.20 percent.
K-mer size five and six also had good accuracy in unigram
itself (82.80 per cent and 81.30 per cent).

Predicted data-Support Vector Machine

0.84

. .
-

0.76 kmer size =6|

—&—Kmer size=3

Kmer size =4|

Accuracy

Kmer size =5

0.74

(1L,1) (12) (13) (1L4) (1,5) (1,6)

Ngram

Fig. 2: Accuracies of support vector machine for different k-mer
sizes
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So computationally it was found very effective. We were
able to achieve better accuracies with minimum feature
count in case of k-mer five and six. Here for SVM
classifier, it was difficult to say which k-mer performed
best in gene prediction because all the four k-mers (k = 3
to 6) had their own good performance either in unigram (1,
1) or in combination up to trigram (1, 3).

Comparison of different k-mer for Artificial Neural
Network

For artificial neural network, overall accuracy ranged
from 75 per cent to 82.50 per cent. Accuracy was highest
for k-mer size three at (1, 4) and lowest for k-mer size
six at n-gram combination (1, 6). For k-mer size three
n-gram combination (1, 4) was found better option for
gene prediction and for k-mer size four, (1, 2) had the
highest accuracy (81.60 percent). In the case of k-mer
five and six, minimum feature frequency itself produced
better accuracies with values 81.60 per cent and 82.40 per
cent respectively. In k-mer six, huge decline in accuracy
noticed in (1, 2) when compared to (1, 1). There was no
meaning in increasing features by more and more n-gram
combinations. As we know, artificial neural network
needed more computational power and time when
compared to others. So better performance in unigram
itself (k-mer five and six) as showed in the current study
will save computational power and time for the gene
prediction problems.

Predicted data - Artificial Neural Network
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Fig. 3: Accuracies of Artificial Neural Network for different
k-mer sizes
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CONCLUSION

The motivation behind this work is to see how various
machine learning classifiers performs by predicting
genes in metagenomic DNA fragments. We addressed an
important problem in the field of bioinformatics, which
is to discriminate open reading frame (ORF) from the
non-coding sequences. Identification of genes directly
from metagenomic fragments is an important task in
annotating metagenomes. In the current study, we used a
diverse approach in classification of the sequence reads
by converting the sequences into k-mers and extracted
features named k-mer count. Various feature size were
used in the study by applying different combination of
continuous n-grams along with single n-gram for k-mers.
Feature extraction and feature selection are important step
toward enhancing the gene prediction process. Our future
works will investigate the application of more and more
diverse features for gene prediction from metagenomic
DNA fragments. Large scale machine learning methods
are well-suited for gene prediction in metagenomic DNA
fragments. We concludes that machine learning algorithms
namely artificial neural network, support vector machine
and logistic regression shows strong, robust and powerful
ability for classification of coding and non-coding genes
and it represents an intriguing and promising avenue for
predicting rumen metagenomic genes.
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